openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

265 lines
9.2 KiB

#!/usr/bin/env python3
import numpy as np
from collections import deque
from functools import partial
import cereal.messaging as messaging
from cereal import car, log
from cereal.services import SERVICE_LIST
from openpilot.common.params import Params
from openpilot.common.realtime import config_realtime_process, DT_CTRL
from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose
MIN_LAG_VEL = 20.0
MAX_SANE_LAG = 3.0
MIN_ABS_YAW_RATE_DEG = 1
MOVING_CORR_WINDOW = 300.0
MIN_OKAY_WINDOW = 25.0
MIN_NCC = 0.95
class Points:
def __init__(self, num_points):
self.times = deque(maxlen=num_points)
self.okay = deque(maxlen=num_points)
self.desired = deque(maxlen=num_points)
self.actual = deque(maxlen=num_points)
@property
def num_points(self):
return len(self.desired)
@property
def num_okay(self):
return np.count_nonzero(self.okay)
def update(self, t, desired, actual, okay):
self.times.append(t)
self.okay.append(okay)
self.desired.append(desired)
self.actual.append(actual)
def get(self):
return np.array(self.times), np.array(self.desired), np.array(self.actual), np.array(self.okay)
class BlockAverage:
def __init__(self, num_blocks, block_size, valid_blocks, initial_value):
self.num_blocks = num_blocks
self.block_size = block_size
self.block_idx = 0
self.idx = 0
self.values = np.tile(initial_value, (num_blocks, 1))
self.valid_blocks = valid_blocks
def update(self, value):
self.values[self.block_idx] = (self.idx * self.values[self.block_idx] + (self.block_size - self.idx) * value) / self.block_size
self.idx = (self.idx + 1) % self.block_size
if self.idx == 0:
self.block_idx = (self.block_idx + 1) % self.num_blocks
self.valid_blocks = min(self.valid_blocks + 1, self.num_blocks)
def get(self):
valid_block_idx = [i for i in range(self.valid_blocks) if i != self.block_idx]
if not valid_block_idx:
return None
return np.mean(self.values[valid_block_idx], axis=0)
class LagEstimator:
def __init__(self, CP, dt, block_count=10, block_size=100, window_sec=300.0, okay_window_sec=30.0, min_vego=15, min_yr=np.radians(1), min_ncc=0.95):
self.dt = dt
self.window_sec = window_sec
self.okay_window_sec = okay_window_sec
self.initial_lag = CP.steerActuatorDelay + 0.2
self.block_size = block_size
self.block_count = block_count
self.min_vego = min_vego
self.min_yr = min_yr
self.min_ncc = min_ncc
self.t = 0
self.lat_active = False
self.steering_pressed = False
self.desired_curvature = 0
self.v_ego = 0
self.yaw_rate = 0
self.calibrator = PoseCalibrator()
self.reset(self.initial_lag, 0)
def reset(self, initial_lag, valid_blocks):
window_len = int(self.window_sec / self.dt)
self.points = Points(window_len)
self.block_avg = BlockAverage(self.block_count, self.block_size, valid_blocks, initial_lag)
self.lag = initial_lag
def get_msg(self, valid):
msg = messaging.new_message('liveActuatorDelay')
msg.valid = valid
liveDelay = msg.liveActuatorDelay
liveDelay.steerActuatorDelay = self.lag
liveDelay.isEstimated = self.block_avg.valid_blocks > 0
liveDelay.validBlocks = self.block_avg.valid_blocks
liveDelay.points = self.block_avg.values.tolist()
return msg
def handle_log(self, t, which, msg):
if which == "carControl":
self.lat_active = msg.latActive
elif which == "carState":
self.steering_pressed = msg.steeringPressed
self.v_ego = msg.vEgo
elif which == "controlsState":
self.desired_curvature = msg.desiredCurvature
elif which == "liveCalibration":
self.calibrator.feed_live_calib(msg)
elif which == "livePose":
device_pose = Pose.from_live_pose(msg)
calibrated_pose = self.calibrator.build_calibrated_pose(device_pose)
self.yaw_rate = calibrated_pose.angular_velocity.z
self.t = t
def points_valid(self):
return self.points.num_okay >= int(self.okay_window_sec / self.dt)
def update_points(self):
okay = self.lat_active and not self.steering_pressed and self.v_ego > self.min_vego and np.abs(self.yaw_rate) >= self.min_yr
la_desired = self.desired_curvature * self.v_ego * self.v_ego
la_actual_pose = self.yaw_rate * self.v_ego
self.points.update(self.t, la_desired, la_actual_pose, okay)
if not okay or not self.points_valid():
return
times, desired, actual, okay = self.points.get()
times_interp = np.arange(times[-1] - self.window_sec, times[-1], DT_CTRL)
desired_interp = np.interp(times_interp, times, desired)
actual_interp = np.interp(times_interp, times, actual)
okay_interp = np.interp(times_interp, times, okay).astype(bool)
delay, corr = self.actuator_delay(desired_interp, actual_interp, okay_interp, DT_CTRL)
if corr < self.min_ncc:
return
self.block_avg.update(delay)
if (new_lag := self.block_avg.get()) is not None:
self.lag = float(new_lag.item())
def correlation_lags(self, sig_len, dt):
return np.arange(0, sig_len) * dt
def actuator_delay(self, expected_sig, actual_sig, mask, dt, max_lag=1.):
"""
References:
D. Padfield. "Masked FFT registration". In Proc. Computer Vision and
Pattern Recognition, pp. 2918-2925 (2010).
:DOI:`10.1109/CVPR.2010.5540032`
"""
eps = np.finfo(np.float64).eps
expected_sig = np.asarray(expected_sig, dtype=np.float64)
actual_sig = np.asarray(actual_sig, dtype=np.float64)
expected_sig[~mask] = 0.0
actual_sig[~mask] = 0.0
rotated_expected_sig = expected_sig[::-1]
rotated_mask = mask[::-1]
n = len(expected_sig) + len(actual_sig) - 1
fft = partial(np.fft.fft, n=n)
actual_sig_fft = fft(actual_sig)
rotated_expected_sig_fft = fft(rotated_expected_sig)
actual_mask_fft = fft(mask.astype(np.float64))
rotated_mask_fft = fft(rotated_mask.astype(np.float64))
number_overlap_masked_samples = np.fft.ifft(rotated_mask_fft * actual_mask_fft).real
number_overlap_masked_samples[:] = np.round(number_overlap_masked_samples)
number_overlap_masked_samples[:] = np.fmax(number_overlap_masked_samples, eps)
masked_correlated_actual_fft = np.fft.ifft(rotated_mask_fft * actual_sig_fft).real
masked_correlated_expected_fft = np.fft.ifft(actual_mask_fft * rotated_expected_sig_fft).real
numerator = np.fft.ifft(rotated_expected_sig_fft * actual_sig_fft).real
numerator -= masked_correlated_actual_fft * masked_correlated_expected_fft / number_overlap_masked_samples
actual_squared_fft = fft(actual_sig ** 2)
actual_sig_denom = np.fft.ifft(rotated_mask_fft * actual_squared_fft).real
actual_sig_denom -= masked_correlated_actual_fft ** 2 / number_overlap_masked_samples
actual_sig_denom[:] = np.fmax(actual_sig_denom, 0.0)
rotated_expected_squared_fft = fft(rotated_expected_sig ** 2)
expected_sig_denom = np.fft.ifft(actual_mask_fft * rotated_expected_squared_fft).real
expected_sig_denom -= masked_correlated_expected_fft ** 2 / number_overlap_masked_samples
expected_sig_denom[:] = np.fmax(expected_sig_denom, 0.0)
denom = np.sqrt(actual_sig_denom * expected_sig_denom)
# zero-out samples with very small denominators
tol = 1e3 * eps * np.max(np.abs(denom), keepdims=True)
nonzero_indices = denom > tol
ncc = np.zeros_like(denom, dtype=np.float64)
ncc[nonzero_indices] = numerator[nonzero_indices] / denom[nonzero_indices]
np.clip(ncc, -1, 1, out=ncc)
max_lag_samples = int(max_lag / dt)
roi_ncc = ncc[len(expected_sig) - 1: len(expected_sig) - 1 + max_lag_samples]
max_corr_index = np.argmax(roi_ncc)
corr = roi_ncc[max_corr_index]
lag = max_corr_index * dt
return lag, corr
def main():
config_realtime_process([0, 1, 2, 3], 5)
pm = messaging.PubMaster(['liveActuatorDelay', 'alertDebug'])
sm = messaging.SubMaster(['livePose', 'liveCalibration', 'carControl', 'carState', 'controlsState'], poll='livePose')
params = Params()
CP = messaging.log_from_bytes(params.get("CarParams", block=True), car.CarParams)
estimator = LagEstimator(CP, 1. / SERVICE_LIST['livePose'].frequency)
lag_params = params.get("LiveLag")
if lag_params:
try:
with log.Event.from_bytes(lag_params) as msg:
lag_init = msg.liveActuatorDelay.steerActuatorDelay
valid_blocks = msg.liveActuatorDelay.validBlocks
estimator.reset(lag_init, valid_blocks)
except Exception:
print("Error reading cached LagParams")
while True:
sm.update()
if sm.all_checks():
for which in sorted(sm.updated.keys(), key=lambda x: sm.logMonoTime[x]):
if sm.updated[which]:
t = sm.logMonoTime[which] * 1e-9
estimator.handle_log(t, which, sm[which])
estimator.update_points()
if sm.frame % 25 == 0:
msg = estimator.get_msg(sm.all_checks())
alert_msg = messaging.new_message('alertDebug')
alert_msg.alertDebug.alertText1 = f"Lag estimate (fixed: {CP.steerActuatorDelay:.2f} s)"
alert_msg.alertDebug.alertText2 = f"{msg.liveActuatorDelay.steerActuatorDelay:.2f} s ({msg.liveActuatorDelay.isEstimated})"
pm.send('liveActuatorDelay', msg)
pm.send('alertDebug', alert_msg)
if msg.liveActuatorDelay.isEstimated: # TODO maybe to often once estimated
params.put_nonblocking("LiveLag", msg.to_bytes())
if __name__ == "__main__":
main()