openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

331 lines
12 KiB

#!/usr/bin/env python3
import os
import numpy as np
from collections import deque
from functools import partial
import cereal.messaging as messaging
from cereal import car, log
from cereal.services import SERVICE_LIST
from openpilot.common.params import Params
from openpilot.common.realtime import config_realtime_process
from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose
BLOCK_SIZE = 100
BLOCK_NUM = 50
BLOCK_NUM_NEEDED = 5
MOVING_WINDOW_SEC = 300.0
MIN_OKAY_WINDOW_SEC = 30.0
MIN_RECOVERY_BUFFER_SEC = 2.0
MIN_VEGO = 15.0
MIN_ABS_YAW_RATE = np.radians(1.0)
MIN_NCC = 0.95
def parabolic_peak_interp(R, max_index):
if max_index == 0 or max_index == len(R) - 1:
return max_index
y_m1, y_0, y_p1 = R[max_index - 1], R[max_index], R[max_index + 1]
offset = 0.5 * (y_p1 - y_m1) / (2 * y_0 - y_p1 - y_m1)
return max_index + offset
def masked_normalized_cross_correlation(expected_sig, actual_sig, mask):
"""
References:
D. Padfield. "Masked FFT registration". In Proc. Computer Vision and
Pattern Recognition, pp. 2918-2925 (2010).
:DOI:`10.1109/CVPR.2010.5540032`
"""
eps = np.finfo(np.float64).eps
expected_sig = np.asarray(expected_sig, dtype=np.float64)
actual_sig = np.asarray(actual_sig, dtype=np.float64)
expected_sig[~mask] = 0.0
actual_sig[~mask] = 0.0
rotated_expected_sig = expected_sig[::-1]
rotated_mask = mask[::-1]
n = len(expected_sig) + len(actual_sig) - 1
fft = partial(np.fft.fft, n=n)
actual_sig_fft = fft(actual_sig)
rotated_expected_sig_fft = fft(rotated_expected_sig)
actual_mask_fft = fft(mask.astype(np.float64))
rotated_mask_fft = fft(rotated_mask.astype(np.float64))
number_overlap_masked_samples = np.fft.ifft(rotated_mask_fft * actual_mask_fft).real
number_overlap_masked_samples[:] = np.round(number_overlap_masked_samples)
number_overlap_masked_samples[:] = np.fmax(number_overlap_masked_samples, eps)
masked_correlated_actual_fft = np.fft.ifft(rotated_mask_fft * actual_sig_fft).real
masked_correlated_expected_fft = np.fft.ifft(actual_mask_fft * rotated_expected_sig_fft).real
numerator = np.fft.ifft(rotated_expected_sig_fft * actual_sig_fft).real
numerator -= masked_correlated_actual_fft * masked_correlated_expected_fft / number_overlap_masked_samples
actual_squared_fft = fft(actual_sig ** 2)
actual_sig_denom = np.fft.ifft(rotated_mask_fft * actual_squared_fft).real
actual_sig_denom -= masked_correlated_actual_fft ** 2 / number_overlap_masked_samples
actual_sig_denom[:] = np.fmax(actual_sig_denom, 0.0)
rotated_expected_squared_fft = fft(rotated_expected_sig ** 2)
expected_sig_denom = np.fft.ifft(actual_mask_fft * rotated_expected_squared_fft).real
expected_sig_denom -= masked_correlated_expected_fft ** 2 / number_overlap_masked_samples
expected_sig_denom[:] = np.fmax(expected_sig_denom, 0.0)
denom = np.sqrt(actual_sig_denom * expected_sig_denom)
# zero-out samples with very small denominators
tol = 1e3 * eps * np.max(np.abs(denom), keepdims=True)
nonzero_indices = denom > tol
ncc = np.zeros_like(denom, dtype=np.float64)
ncc[nonzero_indices] = numerator[nonzero_indices] / denom[nonzero_indices]
np.clip(ncc, -1, 1, out=ncc)
return ncc
class Points:
def __init__(self, num_points):
self.times = deque(maxlen=num_points)
self.okay = deque(maxlen=num_points)
self.desired = deque(maxlen=num_points)
self.actual = deque(maxlen=num_points)
@property
def num_points(self):
return len(self.desired)
@property
def num_okay(self):
return np.count_nonzero(self.okay)
def update(self, t, desired, actual, okay):
self.times.append(t)
self.okay.append(okay)
self.desired.append(desired)
self.actual.append(actual)
def get(self):
return np.array(self.times), np.array(self.desired), np.array(self.actual), np.array(self.okay)
class BlockAverage:
def __init__(self, num_blocks, block_size, valid_blocks, initial_value):
self.num_blocks = num_blocks
self.block_size = block_size
self.block_idx = 0
self.idx = 0
self.values = np.tile(initial_value, (num_blocks, 1))
self.valid_blocks = valid_blocks
def update(self, value):
self.values[self.block_idx] = (self.idx * self.values[self.block_idx] + (self.block_size - self.idx) * value) / self.block_size
self.idx = (self.idx + 1) % self.block_size
if self.idx == 0:
self.block_idx = (self.block_idx + 1) % self.num_blocks
self.valid_blocks = min(self.valid_blocks + 1, self.num_blocks)
def get(self):
valid_block_idx = [i for i in range(self.valid_blocks) if i != self.block_idx]
if not valid_block_idx:
return None
return float(np.mean(self.values[valid_block_idx], axis=0).item())
class LagEstimator:
def __init__(self, CP, dt,
block_count=BLOCK_NUM, min_valid_block_count=BLOCK_NUM_NEEDED, block_size=BLOCK_SIZE,
window_sec=MOVING_WINDOW_SEC, okay_window_sec=MIN_OKAY_WINDOW_SEC, min_recovery_buffer_sec=MIN_RECOVERY_BUFFER_SEC,
min_vego=MIN_VEGO, min_yr=MIN_ABS_YAW_RATE, min_ncc=MIN_NCC):
self.dt = dt
self.window_sec = window_sec
self.okay_window_sec = okay_window_sec
self.min_recovery_buffer_sec = min_recovery_buffer_sec
self.initial_lag = CP.steerActuatorDelay + 0.2
self.block_size = block_size
self.block_count = block_count
self.min_valid_block_count = min_valid_block_count
self.min_vego = min_vego
self.min_yr = min_yr
self.min_ncc = min_ncc
self.t = 0
self.lat_active = False
self.steering_pressed = False
self.steering_saturated = False
self.desired_curvature = 0
self.v_ego = 0
self.yaw_rate = 0
self.last_lat_inactive_t = 0
self.last_steering_pressed_t = 0
self.last_steering_saturated_t = 0
self.last_estimate_t = 0
self.calibrator = PoseCalibrator()
self.reset(self.initial_lag, 0)
def reset(self, initial_lag, valid_blocks):
window_len = int(self.window_sec / self.dt)
self.points = Points(window_len)
self.block_avg = BlockAverage(self.block_count, self.block_size, valid_blocks, initial_lag)
def get_msg(self, valid, debug=False):
msg = messaging.new_message('liveDelay')
msg.valid = valid
liveDelay = msg.liveDelay
estimated_lag = self.block_avg.get()
liveDelay.lateralDelayEstimate = estimated_lag or self.initial_lag
if self.block_avg.valid_blocks >= self.min_valid_block_count and estimated_lag is not None:
liveDelay.status = log.LiveDelayData.Status.estimated
liveDelay.lateralDelay = estimated_lag
else:
liveDelay.status = log.LiveDelayData.Status.initial
liveDelay.lateralDelay = self.initial_lag
liveDelay.validBlocks = self.block_avg.valid_blocks
# TODO only in debug
# if debug:
liveDelay.points = self.block_avg.values.flatten().tolist()
return msg
def handle_log(self, t, which, msg):
if which == "carControl":
self.lat_active = msg.latActive
elif which == "carState":
self.steering_pressed = msg.steeringPressed
self.v_ego = msg.vEgo
elif which == "controlsState":
self.steering_saturated = getattr(msg.lateralControlState, msg.lateralControlState.which()).saturated
self.desired_curvature = msg.desiredCurvature
elif which == "liveCalibration":
self.calibrator.feed_live_calib(msg)
elif which == "livePose":
device_pose = Pose.from_live_pose(msg)
calibrated_pose = self.calibrator.build_calibrated_pose(device_pose)
self.yaw_rate = calibrated_pose.angular_velocity.z
self.t = t
def points_valid(self):
return self.points.num_okay >= int(self.okay_window_sec / self.dt)
def update_points(self):
if not self.lat_active:
self.last_lat_inactive_t = self.t
if self.steering_pressed:
self.last_steering_pressed_t = self.t
if self.steering_saturated:
self.last_steering_saturated_t = self.t
la_desired = self.desired_curvature * self.v_ego * self.v_ego
la_actual_pose = self.yaw_rate * self.v_ego
fast = self.v_ego > self.min_vego
turning = np.abs(self.yaw_rate) >= self.min_yr
has_recovered = all( # wait for recovery after !lat_active, steering_pressed, steering_saturated
self.t - last_t >= self.min_recovery_buffer_sec
for last_t in [self.last_lat_inactive_t, self.last_steering_pressed_t, self.last_steering_saturated_t]
)
okay = self.lat_active and not self.steering_pressed and not self.steering_saturated and fast and turning and has_recovered
self.points.update(self.t, la_desired, la_actual_pose, okay)
def update_estimate(self):
# check if the points are valid overall
if not self.points_valid():
return
times, desired, actual, okay = self.points.get()
# check if there are any new valid data points since the last update
if self.last_estimate_t != 0:
new_values_start_idx = next(-i for i, t in enumerate(reversed(times)) if t <= self.last_estimate_t)
if (new_values_start_idx == 0 or not np.any(okay[new_values_start_idx:])):
return
delay, corr = self.actuator_delay(desired, actual, okay, self.dt)
if corr < self.min_ncc:
return
self.block_avg.update(delay)
self.last_estimate_t = self.t
def correlation_lags(self, sig_len, dt):
return np.arange(0, sig_len) * dt
def actuator_delay(self, expected_sig, actual_sig, mask, dt, max_lag=1.):
ncc = masked_normalized_cross_correlation(expected_sig, actual_sig, mask)
# only consider lags from 0 to max_lag
max_lag_samples = int(max_lag / dt)
roi_ncc = ncc[len(expected_sig) - 1: len(expected_sig) - 1 + max_lag_samples]
max_corr_index = np.argmax(roi_ncc)
corr = roi_ncc[max_corr_index]
lag = parabolic_peak_interp(roi_ncc, max_corr_index) * dt
return lag, corr
def main():
config_realtime_process([0, 1, 2, 3], 5)
DEBUG = bool(int(os.getenv("DEBUG", "0")))
pm = messaging.PubMaster(['liveDelay', 'alertDebug'])
sm = messaging.SubMaster(['livePose', 'liveCalibration', 'carControl', 'carState', 'controlsState'], poll='livePose')
params = Params()
CP = messaging.log_from_bytes(params.get("CarParams", block=True), car.CarParams)
estimator = LagEstimator(CP, 1. / SERVICE_LIST['livePose'].frequency)
lag_params = params.get("LiveLag")
if lag_params:
try:
with log.Event.from_bytes(lag_params) as msg:
lag_init = msg.liveDelay.lateralDelayEstimate
valid_blocks = msg.liveDelay.validBlocks
estimator.reset(lag_init, valid_blocks)
except Exception:
print("Error reading cached LagParams")
while True:
sm.update()
if sm.all_checks():
for which in sorted(sm.updated.keys(), key=lambda x: sm.logMonoTime[x]):
if sm.updated[which]:
t = sm.logMonoTime[which] * 1e-9
estimator.handle_log(t, which, sm[which])
estimator.update_points()
# 4Hz driven by livePose
if sm.frame % 5 == 0:
estimator.update_estimate()
msg = estimator.get_msg(sm.all_checks(), DEBUG)
# TODO remove
alert_msg = messaging.new_message('alertDebug')
alert_msg.alertDebug.alertText1 = f"Lag estimate (fixed: {CP.steerActuatorDelay:.2f} s)"
progress = int(min((estimator.block_avg.block_idx * estimator.block_avg.block_size + estimator.block_avg.idx) / (estimator.min_valid_block_count * estimator.block_avg.block_size), 1.0) * 100)
alert_msg.alertDebug.alertText2 = f"{msg.liveDelay.lateralDelayEstimate:.2f} s ({msg.liveDelay.status == 'estimated'}, blocks: {msg.liveDelay.validBlocks}, progress: {progress}%)"
pm.send('alertDebug', alert_msg)
msg_dat = msg.to_bytes()
# cache every 60 seconds
if sm.frame % 240 == 0:
params.put_nonblocking("LiveLag", msg_dat)
pm.send('liveDelay', msg_dat)
if __name__ == "__main__":
main()