You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							252 lines
						
					
					
						
							9.7 KiB
						
					
					
				
			
		
		
	
	
							252 lines
						
					
					
						
							9.7 KiB
						
					
					
				| #!/usr/bin/env python3
 | |
| import math
 | |
| import numpy as np
 | |
| from common.params import Params
 | |
| from common.numpy_fast import interp
 | |
| 
 | |
| import cereal.messaging as messaging
 | |
| from cereal import car
 | |
| from common.realtime import sec_since_boot
 | |
| from selfdrive.swaglog import cloudlog
 | |
| from selfdrive.config import Conversions as CV
 | |
| from selfdrive.controls.lib.speed_smoother import speed_smoother
 | |
| from selfdrive.controls.lib.longcontrol import LongCtrlState, MIN_CAN_SPEED
 | |
| from selfdrive.controls.lib.fcw import FCWChecker
 | |
| from selfdrive.controls.lib.long_mpc import LongitudinalMpc
 | |
| 
 | |
| MAX_SPEED = 255.0
 | |
| 
 | |
| LON_MPC_STEP = 0.2  # first step is 0.2s
 | |
| MAX_SPEED_ERROR = 2.0
 | |
| AWARENESS_DECEL = -0.2     # car smoothly decel at .2m/s^2 when user is distracted
 | |
| 
 | |
| # lookup tables VS speed to determine min and max accels in cruise
 | |
| # make sure these accelerations are smaller than mpc limits
 | |
| _A_CRUISE_MIN_V  = [-1.0, -.8, -.67, -.5, -.30]
 | |
| _A_CRUISE_MIN_BP = [   0., 5.,  10., 20.,  40.]
 | |
| 
 | |
| # need fast accel at very low speed for stop and go
 | |
| # make sure these accelerations are smaller than mpc limits
 | |
| _A_CRUISE_MAX_V = [1.2, 1.2, 0.65, .4]
 | |
| _A_CRUISE_MAX_V_FOLLOWING = [1.6, 1.6, 0.65, .4]
 | |
| _A_CRUISE_MAX_BP = [0.,  6.4, 22.5, 40.]
 | |
| 
 | |
| # Lookup table for turns
 | |
| _A_TOTAL_MAX_V = [1.7, 3.2]
 | |
| _A_TOTAL_MAX_BP = [20., 40.]
 | |
| 
 | |
| # 75th percentile
 | |
| SPEED_PERCENTILE_IDX = 7
 | |
| 
 | |
| 
 | |
| def calc_cruise_accel_limits(v_ego, following):
 | |
|   a_cruise_min = interp(v_ego, _A_CRUISE_MIN_BP, _A_CRUISE_MIN_V)
 | |
| 
 | |
|   if following:
 | |
|     a_cruise_max = interp(v_ego, _A_CRUISE_MAX_BP, _A_CRUISE_MAX_V_FOLLOWING)
 | |
|   else:
 | |
|     a_cruise_max = interp(v_ego, _A_CRUISE_MAX_BP, _A_CRUISE_MAX_V)
 | |
|   return np.vstack([a_cruise_min, a_cruise_max])
 | |
| 
 | |
| 
 | |
| def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
 | |
|   """
 | |
|   This function returns a limited long acceleration allowed, depending on the existing lateral acceleration
 | |
|   this should avoid accelerating when losing the target in turns
 | |
|   """
 | |
| 
 | |
|   a_total_max = interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
 | |
|   a_y = v_ego**2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase)
 | |
|   a_x_allowed = math.sqrt(max(a_total_max**2 - a_y**2, 0.))
 | |
| 
 | |
|   return [a_target[0], min(a_target[1], a_x_allowed)]
 | |
| 
 | |
| 
 | |
| class Planner():
 | |
|   def __init__(self, CP):
 | |
|     self.CP = CP
 | |
| 
 | |
|     self.mpc1 = LongitudinalMpc(1)
 | |
|     self.mpc2 = LongitudinalMpc(2)
 | |
| 
 | |
|     self.v_acc_start = 0.0
 | |
|     self.a_acc_start = 0.0
 | |
| 
 | |
|     self.v_acc = 0.0
 | |
|     self.v_acc_future = 0.0
 | |
|     self.a_acc = 0.0
 | |
|     self.v_cruise = 0.0
 | |
|     self.a_cruise = 0.0
 | |
|     self.v_model = 0.0
 | |
|     self.a_model = 0.0
 | |
| 
 | |
|     self.longitudinalPlanSource = 'cruise'
 | |
|     self.fcw_checker = FCWChecker()
 | |
|     self.path_x = np.arange(192)
 | |
| 
 | |
|     self.params = Params()
 | |
|     self.first_loop = True
 | |
| 
 | |
|   def choose_solution(self, v_cruise_setpoint, enabled):
 | |
|     if enabled:
 | |
|       solutions = {'model': self.v_model, 'cruise': self.v_cruise}
 | |
|       if self.mpc1.prev_lead_status:
 | |
|         solutions['mpc1'] = self.mpc1.v_mpc
 | |
|       if self.mpc2.prev_lead_status:
 | |
|         solutions['mpc2'] = self.mpc2.v_mpc
 | |
| 
 | |
|       slowest = min(solutions, key=solutions.get)
 | |
| 
 | |
|       self.longitudinalPlanSource = slowest
 | |
|       # Choose lowest of MPC and cruise
 | |
|       if slowest == 'mpc1':
 | |
|         self.v_acc = self.mpc1.v_mpc
 | |
|         self.a_acc = self.mpc1.a_mpc
 | |
|       elif slowest == 'mpc2':
 | |
|         self.v_acc = self.mpc2.v_mpc
 | |
|         self.a_acc = self.mpc2.a_mpc
 | |
|       elif slowest == 'cruise':
 | |
|         self.v_acc = self.v_cruise
 | |
|         self.a_acc = self.a_cruise
 | |
|       elif slowest == 'model':
 | |
|         self.v_acc = self.v_model
 | |
|         self.a_acc = self.a_model
 | |
| 
 | |
|     self.v_acc_future = min([self.mpc1.v_mpc_future, self.mpc2.v_mpc_future, v_cruise_setpoint])
 | |
| 
 | |
|   def update(self, sm, pm, CP, VM, PP):
 | |
|     """Gets called when new radarState is available"""
 | |
|     cur_time = sec_since_boot()
 | |
|     v_ego = sm['carState'].vEgo
 | |
| 
 | |
|     long_control_state = sm['controlsState'].longControlState
 | |
|     v_cruise_kph = sm['controlsState'].vCruise
 | |
|     force_slow_decel = sm['controlsState'].forceDecel
 | |
|     v_cruise_setpoint = v_cruise_kph * CV.KPH_TO_MS
 | |
| 
 | |
|     lead_1 = sm['radarState'].leadOne
 | |
|     lead_2 = sm['radarState'].leadTwo
 | |
| 
 | |
|     enabled = (long_control_state == LongCtrlState.pid) or (long_control_state == LongCtrlState.stopping)
 | |
|     following = lead_1.status and lead_1.dRel < 45.0 and lead_1.vLeadK > v_ego and lead_1.aLeadK > 0.0
 | |
| 
 | |
|     if len(sm['model'].path.poly):
 | |
|       path = list(sm['model'].path.poly)
 | |
| 
 | |
|       # Curvature of polynomial https://en.wikipedia.org/wiki/Curvature#Curvature_of_the_graph_of_a_function
 | |
|       # y = a x^3 + b x^2 + c x + d, y' = 3 a x^2 + 2 b x + c, y'' = 6 a x + 2 b
 | |
|       # k = y'' / (1 + y'^2)^1.5
 | |
|       # TODO: compute max speed without using a list of points and without numpy
 | |
|       y_p = 3 * path[0] * self.path_x**2 + 2 * path[1] * self.path_x + path[2]
 | |
|       y_pp = 6 * path[0] * self.path_x + 2 * path[1]
 | |
|       curv = y_pp / (1. + y_p**2)**1.5
 | |
| 
 | |
|       a_y_max = 2.975 - v_ego * 0.0375  # ~1.85 @ 75mph, ~2.6 @ 25mph
 | |
|       v_curvature = np.sqrt(a_y_max / np.clip(np.abs(curv), 1e-4, None))
 | |
|       model_speed = np.min(v_curvature)
 | |
|       model_speed = max(20.0 * CV.MPH_TO_MS, model_speed) # Don't slow down below 20mph
 | |
|     else:
 | |
|       model_speed = MAX_SPEED
 | |
| 
 | |
|     # Calculate speed for normal cruise control
 | |
|     if enabled and not self.first_loop:
 | |
|       accel_limits = [float(x) for x in calc_cruise_accel_limits(v_ego, following)]
 | |
|       jerk_limits = [min(-0.1, accel_limits[0]), max(0.1, accel_limits[1])]  # TODO: make a separate lookup for jerk tuning
 | |
|       accel_limits_turns = limit_accel_in_turns(v_ego, sm['carState'].steeringAngle, accel_limits, self.CP)
 | |
| 
 | |
|       if force_slow_decel:
 | |
|         # if required so, force a smooth deceleration
 | |
|         accel_limits_turns[1] = min(accel_limits_turns[1], AWARENESS_DECEL)
 | |
|         accel_limits_turns[0] = min(accel_limits_turns[0], accel_limits_turns[1])
 | |
| 
 | |
|       self.v_cruise, self.a_cruise = speed_smoother(self.v_acc_start, self.a_acc_start,
 | |
|                                                     v_cruise_setpoint,
 | |
|                                                     accel_limits_turns[1], accel_limits_turns[0],
 | |
|                                                     jerk_limits[1], jerk_limits[0],
 | |
|                                                     LON_MPC_STEP)
 | |
| 
 | |
|       self.v_model, self.a_model = speed_smoother(self.v_acc_start, self.a_acc_start,
 | |
|                                                     model_speed,
 | |
|                                                     2*accel_limits[1], accel_limits[0],
 | |
|                                                     2*jerk_limits[1], jerk_limits[0],
 | |
|                                                     LON_MPC_STEP)
 | |
| 
 | |
|       # cruise speed can't be negative even is user is distracted
 | |
|       self.v_cruise = max(self.v_cruise, 0.)
 | |
|     else:
 | |
|       starting = long_control_state == LongCtrlState.starting
 | |
|       a_ego = min(sm['carState'].aEgo, 0.0)
 | |
|       reset_speed = MIN_CAN_SPEED if starting else v_ego
 | |
|       reset_accel = self.CP.startAccel if starting else a_ego
 | |
|       self.v_acc = reset_speed
 | |
|       self.a_acc = reset_accel
 | |
|       self.v_acc_start = reset_speed
 | |
|       self.a_acc_start = reset_accel
 | |
|       self.v_cruise = reset_speed
 | |
|       self.a_cruise = reset_accel
 | |
| 
 | |
|     self.mpc1.set_cur_state(self.v_acc_start, self.a_acc_start)
 | |
|     self.mpc2.set_cur_state(self.v_acc_start, self.a_acc_start)
 | |
| 
 | |
|     self.mpc1.update(pm, sm['carState'], lead_1, v_cruise_setpoint)
 | |
|     self.mpc2.update(pm, sm['carState'], lead_2, v_cruise_setpoint)
 | |
| 
 | |
|     self.choose_solution(v_cruise_setpoint, enabled)
 | |
| 
 | |
|     # determine fcw
 | |
|     if self.mpc1.new_lead:
 | |
|       self.fcw_checker.reset_lead(cur_time)
 | |
| 
 | |
|     blinkers = sm['carState'].leftBlinker or sm['carState'].rightBlinker
 | |
|     fcw = self.fcw_checker.update(self.mpc1.mpc_solution, cur_time,
 | |
|                                   sm['controlsState'].active,
 | |
|                                   v_ego, sm['carState'].aEgo,
 | |
|                                   lead_1.dRel, lead_1.vLead, lead_1.aLeadK,
 | |
|                                   lead_1.yRel, lead_1.vLat,
 | |
|                                   lead_1.fcw, blinkers) and not sm['carState'].brakePressed
 | |
|     if fcw:
 | |
|       cloudlog.info("FCW triggered %s", self.fcw_checker.counters)
 | |
| 
 | |
|     radar_dead = not sm.alive['radarState']
 | |
| 
 | |
|     radar_errors = list(sm['radarState'].radarErrors)
 | |
|     radar_fault = car.RadarData.Error.fault in radar_errors
 | |
|     radar_can_error = car.RadarData.Error.canError in radar_errors
 | |
| 
 | |
|     # **** send the plan ****
 | |
|     plan_send = messaging.new_message('plan')
 | |
| 
 | |
|     plan_send.valid = sm.all_alive_and_valid(service_list=['carState', 'controlsState', 'radarState'])
 | |
| 
 | |
|     plan_send.plan.mdMonoTime = sm.logMonoTime['model']
 | |
|     plan_send.plan.radarStateMonoTime = sm.logMonoTime['radarState']
 | |
| 
 | |
|     # longitudal plan
 | |
|     plan_send.plan.vCruise = float(self.v_cruise)
 | |
|     plan_send.plan.aCruise = float(self.a_cruise)
 | |
|     plan_send.plan.vStart = float(self.v_acc_start)
 | |
|     plan_send.plan.aStart = float(self.a_acc_start)
 | |
|     plan_send.plan.vTarget = float(self.v_acc)
 | |
|     plan_send.plan.aTarget = float(self.a_acc)
 | |
|     plan_send.plan.vTargetFuture = float(self.v_acc_future)
 | |
|     plan_send.plan.hasLead = self.mpc1.prev_lead_status
 | |
|     plan_send.plan.longitudinalPlanSource = self.longitudinalPlanSource
 | |
| 
 | |
|     radar_valid = not (radar_dead or radar_fault)
 | |
|     plan_send.plan.radarValid = bool(radar_valid)
 | |
|     plan_send.plan.radarCanError = bool(radar_can_error)
 | |
| 
 | |
|     plan_send.plan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.rcv_time['radarState']
 | |
| 
 | |
|     # Send out fcw
 | |
|     plan_send.plan.fcw = fcw
 | |
| 
 | |
|     pm.send('plan', plan_send)
 | |
| 
 | |
|     # Interpolate 0.05 seconds and save as starting point for next iteration
 | |
|     a_acc_sol = self.a_acc_start + (CP.radarTimeStep / LON_MPC_STEP) * (self.a_acc - self.a_acc_start)
 | |
|     v_acc_sol = self.v_acc_start + CP.radarTimeStep * (a_acc_sol + self.a_acc_start) / 2.0
 | |
|     self.v_acc_start = v_acc_sol
 | |
|     self.a_acc_start = a_acc_sol
 | |
| 
 | |
|     self.first_loop = False
 | |
| 
 |