openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

459 lines
17 KiB

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Claire Maurice
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COMPLEX_SCHUR_H
#define EIGEN_COMPLEX_SCHUR_H
#include "./HessenbergDecomposition.h"
namespace Eigen {
namespace internal {
template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
}
/** \eigenvalues_module \ingroup Eigenvalues_Module
*
*
* \class ComplexSchur
*
* \brief Performs a complex Schur decomposition of a real or complex square matrix
*
* \tparam _MatrixType the type of the matrix of which we are
* computing the Schur decomposition; this is expected to be an
* instantiation of the Matrix class template.
*
* Given a real or complex square matrix A, this class computes the
* Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary
* complex matrix, and T is a complex upper triangular matrix. The
* diagonal of the matrix T corresponds to the eigenvalues of the
* matrix A.
*
* Call the function compute() to compute the Schur decomposition of
* a given matrix. Alternatively, you can use the
* ComplexSchur(const MatrixType&, bool) constructor which computes
* the Schur decomposition at construction time. Once the
* decomposition is computed, you can use the matrixU() and matrixT()
* functions to retrieve the matrices U and V in the decomposition.
*
* \note This code is inspired from Jampack
*
* \sa class RealSchur, class EigenSolver, class ComplexEigenSolver
*/
template<typename _MatrixType> class ComplexSchur
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
/** \brief Scalar type for matrices of type \p _MatrixType. */
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
/** \brief Complex scalar type for \p _MatrixType.
*
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
* \c float or \c double) and just \c Scalar if #Scalar is
* complex.
*/
typedef std::complex<RealScalar> ComplexScalar;
/** \brief Type for the matrices in the Schur decomposition.
*
* This is a square matrix with entries of type #ComplexScalar.
* The size is the same as the size of \p _MatrixType.
*/
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
/** \brief Default constructor.
*
* \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed.
*
* The default constructor is useful in cases in which the user
* intends to perform decompositions via compute(). The \p size
* parameter is only used as a hint. It is not an error to give a
* wrong \p size, but it may impair performance.
*
* \sa compute() for an example.
*/
explicit ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
: m_matT(size,size),
m_matU(size,size),
m_hess(size),
m_isInitialized(false),
m_matUisUptodate(false),
m_maxIters(-1)
{}
/** \brief Constructor; computes Schur decomposition of given matrix.
*
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
*
* This constructor calls compute() to compute the Schur decomposition.
*
* \sa matrixT() and matrixU() for examples.
*/
template<typename InputType>
explicit ComplexSchur(const EigenBase<InputType>& matrix, bool computeU = true)
: m_matT(matrix.rows(),matrix.cols()),
m_matU(matrix.rows(),matrix.cols()),
m_hess(matrix.rows()),
m_isInitialized(false),
m_matUisUptodate(false),
m_maxIters(-1)
{
compute(matrix.derived(), computeU);
}
/** \brief Returns the unitary matrix in the Schur decomposition.
*
* \returns A const reference to the matrix U.
*
* It is assumed that either the constructor
* ComplexSchur(const MatrixType& matrix, bool computeU) or the
* member function compute(const MatrixType& matrix, bool computeU)
* has been called before to compute the Schur decomposition of a
* matrix, and that \p computeU was set to true (the default
* value).
*
* Example: \include ComplexSchur_matrixU.cpp
* Output: \verbinclude ComplexSchur_matrixU.out
*/
const ComplexMatrixType& matrixU() const
{
eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
return m_matU;
}
/** \brief Returns the triangular matrix in the Schur decomposition.
*
* \returns A const reference to the matrix T.
*
* It is assumed that either the constructor
* ComplexSchur(const MatrixType& matrix, bool computeU) or the
* member function compute(const MatrixType& matrix, bool computeU)
* has been called before to compute the Schur decomposition of a
* matrix.
*
* Note that this function returns a plain square matrix. If you want to reference
* only the upper triangular part, use:
* \code schur.matrixT().triangularView<Upper>() \endcode
*
* Example: \include ComplexSchur_matrixT.cpp
* Output: \verbinclude ComplexSchur_matrixT.out
*/
const ComplexMatrixType& matrixT() const
{
eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
return m_matT;
}
/** \brief Computes Schur decomposition of given matrix.
*
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
* \returns Reference to \c *this
*
* The Schur decomposition is computed by first reducing the
* matrix to Hessenberg form using the class
* HessenbergDecomposition. The Hessenberg matrix is then reduced
* to triangular form by performing QR iterations with a single
* shift. The cost of computing the Schur decomposition depends
* on the number of iterations; as a rough guide, it may be taken
* on the number of iterations; as a rough guide, it may be taken
* to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops
* if \a computeU is false.
*
* Example: \include ComplexSchur_compute.cpp
* Output: \verbinclude ComplexSchur_compute.out
*
* \sa compute(const MatrixType&, bool, Index)
*/
template<typename InputType>
ComplexSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
/** \brief Compute Schur decomposition from a given Hessenberg matrix
* \param[in] matrixH Matrix in Hessenberg form H
* \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
* \param computeU Computes the matriX U of the Schur vectors
* \return Reference to \c *this
*
* This routine assumes that the matrix is already reduced in Hessenberg form matrixH
* using either the class HessenbergDecomposition or another mean.
* It computes the upper quasi-triangular matrix T of the Schur decomposition of H
* When computeU is true, this routine computes the matrix U such that
* A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
*
* NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
* is not available, the user should give an identity matrix (Q.setIdentity())
*
* \sa compute(const MatrixType&, bool)
*/
template<typename HessMatrixType, typename OrthMatrixType>
ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU=true);
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
return m_info;
}
/** \brief Sets the maximum number of iterations allowed.
*
* If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
* of the matrix.
*/
ComplexSchur& setMaxIterations(Index maxIters)
{
m_maxIters = maxIters;
return *this;
}
/** \brief Returns the maximum number of iterations. */
Index getMaxIterations()
{
return m_maxIters;
}
/** \brief Maximum number of iterations per row.
*
* If not otherwise specified, the maximum number of iterations is this number times the size of the
* matrix. It is currently set to 30.
*/
static const int m_maxIterationsPerRow = 30;
protected:
ComplexMatrixType m_matT, m_matU;
HessenbergDecomposition<MatrixType> m_hess;
ComputationInfo m_info;
bool m_isInitialized;
bool m_matUisUptodate;
Index m_maxIters;
private:
bool subdiagonalEntryIsNeglegible(Index i);
ComplexScalar computeShift(Index iu, Index iter);
void reduceToTriangularForm(bool computeU);
friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
};
/** If m_matT(i+1,i) is neglegible in floating point arithmetic
* compared to m_matT(i,i) and m_matT(j,j), then set it to zero and
* return true, else return false. */
template<typename MatrixType>
inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
{
RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1));
RealScalar sd = numext::norm1(m_matT.coeff(i+1,i));
if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
{
m_matT.coeffRef(i+1,i) = ComplexScalar(0);
return true;
}
return false;
}
/** Compute the shift in the current QR iteration. */
template<typename MatrixType>
typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
{
using std::abs;
if (iter == 10 || iter == 20)
{
// exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2)));
}
// compute the shift as one of the eigenvalues of t, the 2x2
// diagonal block on the bottom of the active submatrix
Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
RealScalar normt = t.cwiseAbs().sum();
t /= normt; // the normalization by sf is to avoid under/overflow
ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
ComplexScalar eival1 = (trace + disc) / RealScalar(2);
ComplexScalar eival2 = (trace - disc) / RealScalar(2);
if(numext::norm1(eival1) > numext::norm1(eival2))
eival2 = det / eival1;
else
eival1 = det / eival2;
// choose the eigenvalue closest to the bottom entry of the diagonal
if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1)))
return normt * eival1;
else
return normt * eival2;
}
template<typename MatrixType>
template<typename InputType>
ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
{
m_matUisUptodate = false;
eigen_assert(matrix.cols() == matrix.rows());
if(matrix.cols() == 1)
{
m_matT = matrix.derived().template cast<ComplexScalar>();
if(computeU) m_matU = ComplexMatrixType::Identity(1,1);
m_info = Success;
m_isInitialized = true;
m_matUisUptodate = computeU;
return *this;
}
internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix.derived(), computeU);
computeFromHessenberg(m_matT, m_matU, computeU);
return *this;
}
template<typename MatrixType>
template<typename HessMatrixType, typename OrthMatrixType>
ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
{
m_matT = matrixH;
if(computeU)
m_matU = matrixQ;
reduceToTriangularForm(computeU);
return *this;
}
namespace internal {
/* Reduce given matrix to Hessenberg form */
template<typename MatrixType, bool IsComplex>
struct complex_schur_reduce_to_hessenberg
{
// this is the implementation for the case IsComplex = true
static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
{
_this.m_hess.compute(matrix);
_this.m_matT = _this.m_hess.matrixH();
if(computeU) _this.m_matU = _this.m_hess.matrixQ();
}
};
template<typename MatrixType>
struct complex_schur_reduce_to_hessenberg<MatrixType, false>
{
static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
{
typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
// Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
_this.m_hess.compute(matrix);
_this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
if(computeU)
{
// This may cause an allocation which seems to be avoidable
MatrixType Q = _this.m_hess.matrixQ();
_this.m_matU = Q.template cast<ComplexScalar>();
}
}
};
} // end namespace internal
// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
template<typename MatrixType>
void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
{
Index maxIters = m_maxIters;
if (maxIters == -1)
maxIters = m_maxIterationsPerRow * m_matT.rows();
// The matrix m_matT is divided in three parts.
// Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
// Rows il,...,iu is the part we are working on (the active submatrix).
// Rows iu+1,...,end are already brought in triangular form.
Index iu = m_matT.cols() - 1;
Index il;
Index iter = 0; // number of iterations we are working on the (iu,iu) element
Index totalIter = 0; // number of iterations for whole matrix
while(true)
{
// find iu, the bottom row of the active submatrix
while(iu > 0)
{
if(!subdiagonalEntryIsNeglegible(iu-1)) break;
iter = 0;
--iu;
}
// if iu is zero then we are done; the whole matrix is triangularized
if(iu==0) break;
// if we spent too many iterations, we give up
iter++;
totalIter++;
if(totalIter > maxIters) break;
// find il, the top row of the active submatrix
il = iu-1;
while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
{
--il;
}
/* perform the QR step using Givens rotations. The first rotation
creates a bulge; the (il+2,il) element becomes nonzero. This
bulge is chased down to the bottom of the active submatrix. */
ComplexScalar shift = computeShift(iu, iter);
JacobiRotation<ComplexScalar> rot;
rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
for(Index i=il+1 ; i<iu ; i++)
{
rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
}
}
if(totalIter <= maxIters)
m_info = Success;
else
m_info = NoConvergence;
m_isInitialized = true;
m_matUisUptodate = computeU;
}
} // end namespace Eigen
#endif // EIGEN_COMPLEX_SCHUR_H