You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
112 lines
3.5 KiB
112 lines
3.5 KiB
import numpy as np
|
|
|
|
from common.transformations.camera import eon_focal_length, \
|
|
vp_from_ke, \
|
|
get_view_frame_from_road_frame, \
|
|
FULL_FRAME_SIZE
|
|
|
|
# segnet
|
|
|
|
SEGNET_SIZE = (512, 384)
|
|
|
|
segnet_frame_from_camera_frame = np.array([
|
|
[float(SEGNET_SIZE[0])/FULL_FRAME_SIZE[0], 0., ],
|
|
[ 0., float(SEGNET_SIZE[1])/FULL_FRAME_SIZE[1]]])
|
|
|
|
|
|
# model
|
|
|
|
MODEL_INPUT_SIZE = (320, 160)
|
|
MODEL_YUV_SIZE = (MODEL_INPUT_SIZE[0], MODEL_INPUT_SIZE[1] * 3 // 2)
|
|
MODEL_CX = MODEL_INPUT_SIZE[0]/2.
|
|
MODEL_CY = 21.
|
|
|
|
model_zoom = 1.25
|
|
model_height = 1.22
|
|
|
|
# canonical model transform
|
|
model_intrinsics = np.array(
|
|
[[ eon_focal_length / model_zoom, 0. , MODEL_CX],
|
|
[ 0. , eon_focal_length / model_zoom, MODEL_CY],
|
|
[ 0. , 0. , 1.]])
|
|
|
|
|
|
# BIG model
|
|
|
|
BIGMODEL_INPUT_SIZE = (864, 288)
|
|
BIGMODEL_YUV_SIZE = (BIGMODEL_INPUT_SIZE[0], BIGMODEL_INPUT_SIZE[1] * 3 // 2)
|
|
|
|
bigmodel_zoom = 1.
|
|
bigmodel_intrinsics = np.array(
|
|
[[ eon_focal_length / bigmodel_zoom, 0. , 0.5 * BIGMODEL_INPUT_SIZE[0]],
|
|
[ 0. , eon_focal_length / bigmodel_zoom, 0.2 * BIGMODEL_INPUT_SIZE[1]],
|
|
[ 0. , 0. , 1.]])
|
|
|
|
|
|
bigmodel_border = np.array([
|
|
[0,0,1],
|
|
[BIGMODEL_INPUT_SIZE[0], 0, 1],
|
|
[BIGMODEL_INPUT_SIZE[0], BIGMODEL_INPUT_SIZE[1], 1],
|
|
[0, BIGMODEL_INPUT_SIZE[1], 1],
|
|
])
|
|
|
|
|
|
model_frame_from_road_frame = np.dot(model_intrinsics,
|
|
get_view_frame_from_road_frame(0, 0, 0, model_height))
|
|
|
|
bigmodel_frame_from_road_frame = np.dot(bigmodel_intrinsics,
|
|
get_view_frame_from_road_frame(0, 0, 0, model_height))
|
|
|
|
model_frame_from_bigmodel_frame = np.dot(model_intrinsics, np.linalg.inv(bigmodel_intrinsics))
|
|
|
|
# 'camera from model camera'
|
|
def get_model_height_transform(camera_frame_from_road_frame, height):
|
|
camera_frame_from_road_ground = np.dot(camera_frame_from_road_frame, np.array([
|
|
[1, 0, 0],
|
|
[0, 1, 0],
|
|
[0, 0, 0],
|
|
[0, 0, 1],
|
|
]))
|
|
|
|
camera_frame_from_road_high = np.dot(camera_frame_from_road_frame, np.array([
|
|
[1, 0, 0],
|
|
[0, 1, 0],
|
|
[0, 0, height - model_height],
|
|
[0, 0, 1],
|
|
]))
|
|
|
|
road_high_from_camera_frame = np.linalg.inv(camera_frame_from_road_high)
|
|
high_camera_from_low_camera = np.dot(camera_frame_from_road_ground, road_high_from_camera_frame)
|
|
|
|
return high_camera_from_low_camera
|
|
|
|
|
|
# camera_frame_from_model_frame aka 'warp matrix'
|
|
# was: calibration.h/CalibrationTransform
|
|
def get_camera_frame_from_model_frame(camera_frame_from_road_frame, height):
|
|
vp = vp_from_ke(camera_frame_from_road_frame)
|
|
|
|
model_camera_from_model_frame = np.array([
|
|
[model_zoom, 0., vp[0] - MODEL_CX * model_zoom],
|
|
[ 0., model_zoom, vp[1] - MODEL_CY * model_zoom],
|
|
[ 0., 0., 1.],
|
|
])
|
|
|
|
# This function is super slow, so skip it if height is very close to canonical
|
|
# TODO: speed it up!
|
|
if abs(height - model_height) > 0.001: #
|
|
camera_from_model_camera = get_model_height_transform(camera_frame_from_road_frame, height)
|
|
else:
|
|
camera_from_model_camera = np.eye(3)
|
|
|
|
return np.dot(camera_from_model_camera, model_camera_from_model_frame)
|
|
|
|
|
|
def get_camera_frame_from_bigmodel_frame(camera_frame_from_road_frame):
|
|
camera_frame_from_ground = camera_frame_from_road_frame[:, (0, 1, 3)]
|
|
bigmodel_frame_from_ground = bigmodel_frame_from_road_frame[:, (0, 1, 3)]
|
|
|
|
ground_from_bigmodel_frame = np.linalg.inv(bigmodel_frame_from_ground)
|
|
camera_frame_from_bigmodel_frame = np.dot(camera_frame_from_ground, ground_from_bigmodel_frame)
|
|
|
|
return camera_frame_from_bigmodel_frame
|
|
|