openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

294 lines
10 KiB

/* rsa.c
**
** Copyright 2012, The Android Open Source Project
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions are met:
** * Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** * Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** * Neither the name of Google Inc. nor the names of its contributors may
** be used to endorse or promote products derived from this software
** without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
** MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
** EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
** PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
** OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
** WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
** OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
** ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "rsa.h"
#include "sha.h"
// a[] -= mod
static void subM(const RSAPublicKey* key,
uint32_t* a) {
int64_t A = 0;
int i;
for (i = 0; i < key->len; ++i) {
A += (uint64_t)a[i] - key->n[i];
a[i] = (uint32_t)A;
A >>= 32;
}
}
// return a[] >= mod
static int geM(const RSAPublicKey* key,
const uint32_t* a) {
int i;
for (i = key->len; i;) {
--i;
if (a[i] < key->n[i]) return 0;
if (a[i] > key->n[i]) return 1;
}
return 1; // equal
}
// montgomery c[] += a * b[] / R % mod
static void montMulAdd(const RSAPublicKey* key,
uint32_t* c,
const uint32_t a,
const uint32_t* b) {
uint64_t A = (uint64_t)a * b[0] + c[0];
uint32_t d0 = (uint32_t)A * key->n0inv;
uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A;
int i;
for (i = 1; i < key->len; ++i) {
A = (A >> 32) + (uint64_t)a * b[i] + c[i];
B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A;
c[i - 1] = (uint32_t)B;
}
A = (A >> 32) + (B >> 32);
c[i - 1] = (uint32_t)A;
if (A >> 32) {
subM(key, c);
}
}
// montgomery c[] = a[] * b[] / R % mod
static void montMul(const RSAPublicKey* key,
uint32_t* c,
const uint32_t* a,
const uint32_t* b) {
int i;
for (i = 0; i < key->len; ++i) {
c[i] = 0;
}
for (i = 0; i < key->len; ++i) {
montMulAdd(key, c, a[i], b);
}
}
// In-place public exponentiation.
// Input and output big-endian byte array in inout.
static void modpow(const RSAPublicKey* key,
uint8_t* inout) {
uint32_t a[RSANUMWORDS];
uint32_t aR[RSANUMWORDS];
uint32_t aaR[RSANUMWORDS];
uint32_t* aaa = 0;
int i;
// Convert from big endian byte array to little endian word array.
for (i = 0; i < key->len; ++i) {
uint32_t tmp =
(inout[((key->len - 1 - i) * 4) + 0] << 24) |
(inout[((key->len - 1 - i) * 4) + 1] << 16) |
(inout[((key->len - 1 - i) * 4) + 2] << 8) |
(inout[((key->len - 1 - i) * 4) + 3] << 0);
a[i] = tmp;
}
if (key->exponent == 65537) {
aaa = aaR; // Re-use location.
montMul(key, aR, a, key->rr); // aR = a * RR / R mod M
for (i = 0; i < 16; i += 2) {
montMul(key, aaR, aR, aR); // aaR = aR * aR / R mod M
montMul(key, aR, aaR, aaR); // aR = aaR * aaR / R mod M
}
montMul(key, aaa, aR, a); // aaa = aR * a / R mod M
} else if (key->exponent == 3) {
aaa = aR; // Re-use location.
montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */
montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */
montMul(key, aaa, aaR, a); /* aaa = aaR * a / R mod M */
}
// Make sure aaa < mod; aaa is at most 1x mod too large.
if (geM(key, aaa)) {
subM(key, aaa);
}
// Convert to bigendian byte array
for (i = key->len - 1; i >= 0; --i) {
uint32_t tmp = aaa[i];
*inout++ = tmp >> 24;
*inout++ = tmp >> 16;
*inout++ = tmp >> 8;
*inout++ = tmp >> 0;
}
}
// Expected PKCS1.5 signature padding bytes, for a keytool RSA signature.
// Has the 0-length optional parameter encoded in the ASN1 (as opposed to the
// other flavor which omits the optional parameter entirely). This code does not
// accept signatures without the optional parameter.
/*
static const uint8_t sha_padding[RSANUMBYTES] = {
0x00, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0x00, 0x30, 0x21, 0x30,
0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a,
0x05, 0x00, 0x04, 0x14,
// 20 bytes of hash go here.
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
};
*/
static const uint8_t sha_padding_1024[RSANUMBYTES] = {
0x00, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0x00,
// 20 bytes of hash go here.
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
};
// SHA-1 of PKCS1.5 signature sha_padding for 2048 bit, as above.
// At the location of the bytes of the hash all 00 are hashed.
/*static const uint8_t kExpectedPadShaRsa2048[SHA_DIGEST_SIZE] = {
0xdc, 0xbd, 0xbe, 0x42, 0xd5, 0xf5, 0xa7, 0x2e,
0x6e, 0xfc, 0xf5, 0x5d, 0xaf, 0x9d, 0xea, 0x68,
0x7c, 0xfb, 0xf1, 0x67
};*/
// Verify a 2048-bit RSA PKCS1.5 signature against an expected hash.
// Both e=3 and e=65537 are supported. hash_len may be
// SHA_DIGEST_SIZE (== 20) to indicate a SHA-1 hash, or
// SHA256_DIGEST_SIZE (== 32) to indicate a SHA-256 hash. No other
// values are supported.
//
// Returns 1 on successful verification, 0 on failure.
int RSA_verify(const RSAPublicKey *key,
const uint8_t *signature,
const int len,
const uint8_t *hash,
const int hash_len) {
uint8_t buf[RSANUMBYTES];
int i;
//const uint8_t* padding_hash;
if (key->len != RSANUMWORDS) {
return 0; // Wrong key passed in.
}
if (len != sizeof(buf)) {
return 0; // Wrong input length.
}
if (hash_len != SHA_DIGEST_SIZE) {
return 0; // Unsupported hash.
}
if (key->exponent != 3 && key->exponent != 65537) {
return 0; // Unsupported exponent.
}
for (i = 0; i < len; ++i) { // Copy input to local workspace.
buf[i] = signature[i];
}
modpow(key, buf); // In-place exponentiation.
#ifdef TEST_RSA
printf("sig\n");
for (i=0;i<len;i++) { if(i!=0 && i%0x10 == 0) printf("\n"); printf("%02X ", signature[i]); } printf("\n");
printf("hash\n");
for (i=0;i<hash_len;i++) { if(i!=0 && i%0x10 == 0) printf("\n"); printf("%02X ", hash[i]); } printf("\n");
printf("out\n");
for (i=0;i<RSANUMBYTES;i++) { if(i!=0 && i%0x10 == 0) printf("\n"); printf("%02X ", buf[i]); } printf("\n");
printf("target\n");
for (i=0;i<RSANUMBYTES;i++) { if(i!=0 && i%0x10 == 0) printf("\n"); printf("%02X ", sha_padding_1024[i]); } printf("\n");
#endif
// Xor sha portion, so it all becomes 00 iff equal.
for (i = len - hash_len; i < len; ++i) {
buf[i] ^= *hash++;
}
// Hash resulting buf, in-place.
/*switch (hash_len) {
case SHA_DIGEST_SIZE:
padding_hash = kExpectedPadShaRsa2048;
SHA_hash(buf, len, buf);
break;
default:
return 0;
}
// Compare against expected hash value.
for (i = 0; i < hash_len; ++i) {
if (buf[i] != padding_hash[i]) {
return 0;
}
}*/
for (i = 0; i < RSANUMBYTES; ++i) {
if (buf[i] != sha_padding_1024[i]) {
return 0;
}
}
return 1; // All checked out OK.
}