openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

106 lines
3.1 KiB

#!/usr/bin/env python3
import sys
import cereal.messaging as messaging
import numpy as np
import matplotlib.pyplot as plt
N = 21
# debug longitudinal MPC by plotting its trajectory. To receive liveLongitudinalMpc packets,
# set on LOG_MPC env variable and run plannerd on a replay
def plot_longitudinal_mpc(addr="127.0.0.1"):
# *** log ***
livempc = messaging.sub_sock('liveLongitudinalMpc', addr=addr, conflate=True)
radarstate = messaging.sub_sock('radarState', addr=addr, conflate=True)
plt.ion()
fig = plt.figure()
t = np.hstack([np.arange(0.0, 0.8, 0.2), np.arange(0.8, 10.6, 0.6)])
p_x_ego = fig.add_subplot(3, 2, 1)
p_v_ego = fig.add_subplot(3, 2, 3)
p_a_ego = fig.add_subplot(3, 2, 5)
# p_x_l = fig.add_subplot(3, 2, 2)
# p_a_l = fig.add_subplot(3, 2, 6)
p_d_l = fig.add_subplot(3, 2, 2)
p_d_l_v = fig.add_subplot(3, 2, 4)
p_d_l_vv = fig.add_subplot(3, 2, 6)
p_v_ego.set_ylim([0, 30])
p_a_ego.set_ylim([-4, 4])
p_d_l.set_ylim([-1, 10])
p_x_ego.set_title('x')
p_v_ego.set_title('v')
p_a_ego.set_title('a')
p_d_l.set_title('rel dist')
l_x_ego, = p_x_ego.plot(t, np.zeros(N))
l_v_ego, = p_v_ego.plot(t, np.zeros(N))
l_a_ego, = p_a_ego.plot(t, np.zeros(N))
l_x_l, = p_x_ego.plot(t, np.zeros(N))
l_v_l, = p_v_ego.plot(t, np.zeros(N))
l_a_l, = p_a_ego.plot(t, np.zeros(N))
l_d_l, = p_d_l.plot(t, np.zeros(N))
l_d_l_v, = p_d_l_v.plot(np.zeros(N))
l_d_l_vv, = p_d_l_vv.plot(np.zeros(N))
p_x_ego.legend(['ego', 'l'])
p_v_ego.legend(['ego', 'l'])
p_a_ego.legend(['ego', 'l'])
p_d_l_v.set_xlabel('d_rel')
p_d_l_v.set_ylabel('v_rel')
p_d_l_v.set_ylim([-20, 20])
p_d_l_v.set_xlim([0, 100])
p_d_l_vv.set_xlabel('d_rel')
p_d_l_vv.set_ylabel('v_rel')
p_d_l_vv.set_ylim([-5, 5])
p_d_l_vv.set_xlim([10, 40])
while True:
lMpc = messaging.recv_sock(livempc, wait=True)
rs = messaging.recv_sock(radarstate, wait=True)
if lMpc is not None:
if lMpc.liveLongitudinalMpc.mpcId != 1:
continue
x_ego = list(lMpc.liveLongitudinalMpc.xEgo)
v_ego = list(lMpc.liveLongitudinalMpc.vEgo)
a_ego = list(lMpc.liveLongitudinalMpc.aEgo)
x_l = list(lMpc.liveLongitudinalMpc.xLead)
v_l = list(lMpc.liveLongitudinalMpc.vLead)
# a_l = list(lMpc.liveLongitudinalMpc.aLead)
a_l = rs.radarState.leadOne.aLeadK * np.exp(-lMpc.liveLongitudinalMpc.aLeadTau * t**2 / 2)
#print(min(a_ego), lMpc.liveLongitudinalMpc.qpIterations)
l_x_ego.set_ydata(x_ego)
l_v_ego.set_ydata(v_ego)
l_a_ego.set_ydata(a_ego)
l_x_l.set_ydata(x_l)
l_v_l.set_ydata(v_l)
l_a_l.set_ydata(a_l)
l_d_l.set_ydata(np.array(x_l) - np.array(x_ego))
l_d_l_v.set_ydata(np.array(v_l) - np.array(v_ego))
l_d_l_v.set_xdata(np.array(x_l) - np.array(x_ego))
l_d_l_vv.set_ydata(np.array(v_l) - np.array(v_ego))
l_d_l_vv.set_xdata(np.array(x_l) - np.array(x_ego))
p_x_ego.relim()
p_x_ego.autoscale_view(True, scaley=True, scalex=True)
fig.canvas.draw()
fig.canvas.flush_events()
if __name__ == "__main__":
if len(sys.argv) > 1:
plot_longitudinal_mpc(sys.argv[1])
else:
plot_longitudinal_mpc()