You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
333 lines
14 KiB
333 lines
14 KiB
#!/usr/bin/env python3
|
|
import numpy as np
|
|
import sympy as sp
|
|
|
|
import cereal.messaging as messaging
|
|
import common.transformations.coordinates as coord
|
|
from common.transformations.orientation import ecef_euler_from_ned, \
|
|
euler_from_quat, \
|
|
ned_euler_from_ecef, \
|
|
quat_from_euler, \
|
|
rot_from_quat, rot_from_euler
|
|
from rednose.helpers import KalmanError
|
|
from selfdrive.locationd.models.live_kf import LiveKalman, States, ObservationKind
|
|
from selfdrive.locationd.models.constants import GENERATED_DIR
|
|
from selfdrive.swaglog import cloudlog
|
|
|
|
#from datetime import datetime
|
|
#from laika.gps_time import GPSTime
|
|
|
|
from sympy.utilities.lambdify import lambdify
|
|
from rednose.helpers.sympy_helpers import euler_rotate
|
|
|
|
|
|
OUTPUT_DECIMATION = 2
|
|
VISION_DECIMATION = 2
|
|
SENSOR_DECIMATION = 10
|
|
|
|
|
|
def to_float(arr):
|
|
return [float(arr[0]), float(arr[1]), float(arr[2])]
|
|
|
|
|
|
def get_H():
|
|
# this returns a function to eval the jacobian
|
|
# of the observation function of the local vel
|
|
roll = sp.Symbol('roll')
|
|
pitch = sp.Symbol('pitch')
|
|
yaw = sp.Symbol('yaw')
|
|
vx = sp.Symbol('vx')
|
|
vy = sp.Symbol('vy')
|
|
vz = sp.Symbol('vz')
|
|
|
|
h = euler_rotate(roll, pitch, yaw).T*(sp.Matrix([vx, vy, vz]))
|
|
H = h.jacobian(sp.Matrix([roll, pitch, yaw, vx, vy, vz]))
|
|
H_f = lambdify([roll, pitch, yaw, vx, vy, vz], H)
|
|
return H_f
|
|
|
|
|
|
class Localizer():
|
|
def __init__(self, disabled_logs=[], dog=None):
|
|
self.kf = LiveKalman(GENERATED_DIR)
|
|
self.reset_kalman()
|
|
self.max_age = .2 # seconds
|
|
self.disabled_logs = disabled_logs
|
|
self.calib = np.zeros(3)
|
|
self.device_from_calib = np.eye(3)
|
|
self.calib_from_device = np.eye(3)
|
|
self.calibrated = 0
|
|
self.H = get_H()
|
|
|
|
self.posenet_invalid_count = 0
|
|
self.posenet_speed = 0
|
|
self.car_speed = 0
|
|
|
|
self.converter = coord.LocalCoord.from_ecef(self.kf.x[States.ECEF_POS])
|
|
|
|
self.unix_timestamp_millis = 0
|
|
self.last_gps_fix = 0
|
|
|
|
@staticmethod
|
|
def msg_from_state(converter, calib_from_device, H, predicted_state, predicted_cov):
|
|
predicted_std = np.sqrt(np.diagonal(predicted_cov))
|
|
|
|
fix_ecef = predicted_state[States.ECEF_POS]
|
|
fix_ecef_std = predicted_std[States.ECEF_POS_ERR]
|
|
vel_ecef = predicted_state[States.ECEF_VELOCITY]
|
|
vel_ecef_std = predicted_std[States.ECEF_VELOCITY_ERR]
|
|
fix_pos_geo = coord.ecef2geodetic(fix_ecef)
|
|
#fix_pos_geo_std = np.abs(coord.ecef2geodetic(fix_ecef + fix_ecef_std) - fix_pos_geo)
|
|
orientation_ecef = euler_from_quat(predicted_state[States.ECEF_ORIENTATION])
|
|
orientation_ecef_std = predicted_std[States.ECEF_ORIENTATION_ERR]
|
|
|
|
acc_calib = calib_from_device.dot(predicted_state[States.ACCELERATION])
|
|
acc_calib_std = np.sqrt(np.diagonal(calib_from_device.dot(
|
|
predicted_cov[States.ACCELERATION_ERR, States.ACCELERATION_ERR]).dot(
|
|
calib_from_device.T)))
|
|
ang_vel_calib = calib_from_device.dot(predicted_state[States.ANGULAR_VELOCITY])
|
|
ang_vel_calib_std = np.sqrt(np.diagonal(calib_from_device.dot(
|
|
predicted_cov[States.ANGULAR_VELOCITY_ERR, States.ANGULAR_VELOCITY_ERR]).dot(
|
|
calib_from_device.T)))
|
|
|
|
device_from_ecef = rot_from_quat(predicted_state[States.ECEF_ORIENTATION]).T
|
|
vel_device = device_from_ecef.dot(vel_ecef)
|
|
device_from_ecef_eul = euler_from_quat(predicted_state[States.ECEF_ORIENTATION]).T
|
|
idxs = list(range(States.ECEF_ORIENTATION_ERR.start, States.ECEF_ORIENTATION_ERR.stop)) + list(range(States.ECEF_VELOCITY_ERR.start, States.ECEF_VELOCITY_ERR.stop))
|
|
condensed_cov = predicted_cov[idxs][:,idxs]
|
|
HH = H(*list(np.concatenate([device_from_ecef_eul, vel_ecef])))
|
|
vel_device_cov = HH.dot(condensed_cov).dot(HH.T)
|
|
vel_device_std = np.sqrt(np.diagonal(vel_device_cov))
|
|
|
|
vel_calib = calib_from_device.dot(vel_device)
|
|
vel_calib_std = np.sqrt(np.diagonal(calib_from_device.dot(
|
|
vel_device_cov).dot(calib_from_device.T)))
|
|
|
|
orientation_ned = ned_euler_from_ecef(fix_ecef, orientation_ecef)
|
|
#orientation_ned_std = ned_euler_from_ecef(fix_ecef, orientation_ecef + orientation_ecef_std) - orientation_ned
|
|
ned_vel = converter.ecef2ned(fix_ecef + vel_ecef) - converter.ecef2ned(fix_ecef)
|
|
#ned_vel_std = self.converter.ecef2ned(fix_ecef + vel_ecef + vel_ecef_std) - self.converter.ecef2ned(fix_ecef + vel_ecef)
|
|
|
|
fix = messaging.log.LiveLocationKalman.new_message()
|
|
fix.positionGeodetic.value = to_float(fix_pos_geo)
|
|
#fix.positionGeodetic.std = to_float(fix_pos_geo_std)
|
|
#fix.positionGeodetic.valid = True
|
|
fix.positionECEF.value = to_float(fix_ecef)
|
|
fix.positionECEF.std = to_float(fix_ecef_std)
|
|
fix.positionECEF.valid = True
|
|
fix.velocityECEF.value = to_float(vel_ecef)
|
|
fix.velocityECEF.std = to_float(vel_ecef_std)
|
|
fix.velocityECEF.valid = True
|
|
fix.velocityNED.value = to_float(ned_vel)
|
|
#fix.velocityNED.std = to_float(ned_vel_std)
|
|
#fix.velocityNED.valid = True
|
|
fix.velocityDevice.value = to_float(vel_device)
|
|
fix.velocityDevice.std = to_float(vel_device_std)
|
|
fix.velocityDevice.valid = True
|
|
fix.accelerationDevice.value = to_float(predicted_state[States.ACCELERATION])
|
|
fix.accelerationDevice.std = to_float(predicted_std[States.ACCELERATION_ERR])
|
|
fix.accelerationDevice.valid = True
|
|
|
|
fix.orientationECEF.value = to_float(orientation_ecef)
|
|
fix.orientationECEF.std = to_float(orientation_ecef_std)
|
|
fix.orientationECEF.valid = True
|
|
fix.orientationNED.value = to_float(orientation_ned)
|
|
#fix.orientationNED.std = to_float(orientation_ned_std)
|
|
#fix.orientationNED.valid = True
|
|
fix.angularVelocityDevice.value = to_float(predicted_state[States.ANGULAR_VELOCITY])
|
|
fix.angularVelocityDevice.std = to_float(predicted_std[States.ANGULAR_VELOCITY_ERR])
|
|
fix.angularVelocityDevice.valid = True
|
|
|
|
fix.velocityCalibrated.value = to_float(vel_calib)
|
|
fix.velocityCalibrated.std = to_float(vel_calib_std)
|
|
fix.velocityCalibrated.valid = True
|
|
fix.angularVelocityCalibrated.value = to_float(ang_vel_calib)
|
|
fix.angularVelocityCalibrated.std = to_float(ang_vel_calib_std)
|
|
fix.angularVelocityCalibrated.valid = True
|
|
fix.accelerationCalibrated.value = to_float(acc_calib)
|
|
fix.accelerationCalibrated.std = to_float(acc_calib_std)
|
|
fix.accelerationCalibrated.valid = True
|
|
return fix
|
|
|
|
def liveLocationMsg(self, time):
|
|
fix = self.msg_from_state(self.converter, self.calib_from_device, self.H, self.kf.x, self.kf.P)
|
|
|
|
if abs(self.posenet_speed - self.car_speed) > max(0.4 * self.car_speed, 5.0):
|
|
self.posenet_invalid_count += 1
|
|
else:
|
|
self.posenet_invalid_count = 0
|
|
fix.posenetOK = self.posenet_invalid_count < 4
|
|
|
|
#fix.gpsWeek = self.time.week
|
|
#fix.gpsTimeOfWeek = self.time.tow
|
|
fix.unixTimestampMillis = self.unix_timestamp_millis
|
|
|
|
if np.linalg.norm(fix.positionECEF.std) < 50 and self.calibrated:
|
|
fix.status = 'valid'
|
|
elif np.linalg.norm(fix.positionECEF.std) < 50:
|
|
fix.status = 'uncalibrated'
|
|
else:
|
|
fix.status = 'uninitialized'
|
|
return fix
|
|
|
|
def update_kalman(self, time, kind, meas, R=None):
|
|
try:
|
|
self.kf.predict_and_observe(time, kind, meas, R=R)
|
|
except KalmanError:
|
|
cloudlog.error("Error in predict and observe, kalman reset")
|
|
self.reset_kalman()
|
|
#idx = bisect_right([x[0] for x in self.observation_buffer], time)
|
|
#self.observation_buffer.insert(idx, (time, kind, meas))
|
|
#while len(self.observation_buffer) > 0 and self.observation_buffer[-1][0] - self.observation_buffer[0][0] > self.max_age:
|
|
# else:
|
|
# self.observation_buffer.pop(0)
|
|
|
|
def handle_gps(self, current_time, log):
|
|
# ignore the message if the fix is invalid
|
|
if log.flags % 2 == 0:
|
|
return
|
|
|
|
self.last_gps_fix = current_time
|
|
|
|
self.converter = coord.LocalCoord.from_geodetic([log.latitude, log.longitude, log.altitude])
|
|
ecef_pos = self.converter.ned2ecef([0, 0, 0])
|
|
ecef_vel = self.converter.ned2ecef_matrix.dot(np.array(log.vNED))
|
|
ecef_pos_R = np.diag([(3*log.verticalAccuracy)**2]*3)
|
|
ecef_vel_R = np.diag([(log.speedAccuracy)**2]*3)
|
|
|
|
|
|
#self.time = GPSTime.from_datetime(datetime.utcfromtimestamp(log.timestamp*1e-3))
|
|
self.unix_timestamp_millis = log.timestamp
|
|
gps_est_error = np.sqrt((self.kf.x[0] - ecef_pos[0])**2 +
|
|
(self.kf.x[1] - ecef_pos[1])**2 +
|
|
(self.kf.x[2] - ecef_pos[2])**2)
|
|
|
|
orientation_ecef = euler_from_quat(self.kf.x[States.ECEF_ORIENTATION])
|
|
orientation_ned = ned_euler_from_ecef(ecef_pos, orientation_ecef)
|
|
orientation_ned_gps = np.array([0, 0, np.radians(log.bearing)])
|
|
orientation_error = np.mod(orientation_ned - orientation_ned_gps - np.pi, 2*np.pi) - np.pi
|
|
if np.linalg.norm(ecef_vel) > 5 and np.linalg.norm(orientation_error) > 1:
|
|
cloudlog.error("Locationd vs ubloxLocation orientation difference too large, kalman reset")
|
|
initial_pose_ecef_quat = quat_from_euler(ecef_euler_from_ned(ecef_pos, orientation_ned_gps))
|
|
self.reset_kalman(init_orient=initial_pose_ecef_quat)
|
|
self.update_kalman(current_time, ObservationKind.ECEF_ORIENTATION_FROM_GPS, initial_pose_ecef_quat)
|
|
elif gps_est_error > 50:
|
|
cloudlog.error("Locationd vs ubloxLocation position difference too large, kalman reset")
|
|
self.reset_kalman()
|
|
|
|
self.update_kalman(current_time, ObservationKind.ECEF_POS, ecef_pos, R=ecef_pos_R)
|
|
self.update_kalman(current_time, ObservationKind.ECEF_VEL, ecef_vel, R=ecef_vel_R)
|
|
|
|
def handle_car_state(self, current_time, log):
|
|
self.speed_counter += 1
|
|
|
|
if self.speed_counter % SENSOR_DECIMATION == 0:
|
|
self.update_kalman(current_time, ObservationKind.ODOMETRIC_SPEED, [log.vEgo])
|
|
self.car_speed = abs(log.vEgo)
|
|
if log.vEgo == 0:
|
|
self.update_kalman(current_time, ObservationKind.NO_ROT, [0, 0, 0])
|
|
|
|
def handle_cam_odo(self, current_time, log):
|
|
self.cam_counter += 1
|
|
|
|
if self.cam_counter % VISION_DECIMATION == 0:
|
|
rot_device = self.device_from_calib.dot(log.rot)
|
|
rot_device_std = self.device_from_calib.dot(log.rotStd)
|
|
self.update_kalman(current_time,
|
|
ObservationKind.CAMERA_ODO_ROTATION,
|
|
np.concatenate([rot_device, 10*rot_device_std]))
|
|
trans_device = self.device_from_calib.dot(log.trans)
|
|
trans_device_std = self.device_from_calib.dot(log.transStd)
|
|
self.posenet_speed = np.linalg.norm(trans_device)
|
|
self.update_kalman(current_time,
|
|
ObservationKind.CAMERA_ODO_TRANSLATION,
|
|
np.concatenate([trans_device, 10*trans_device_std]))
|
|
|
|
def handle_sensors(self, current_time, log):
|
|
# TODO does not yet account for double sensor readings in the log
|
|
for sensor_reading in log:
|
|
# Gyro Uncalibrated
|
|
if sensor_reading.sensor == 5 and sensor_reading.type == 16:
|
|
self.gyro_counter += 1
|
|
if self.gyro_counter % SENSOR_DECIMATION == 0:
|
|
v = sensor_reading.gyroUncalibrated.v
|
|
self.update_kalman(current_time, ObservationKind.PHONE_GYRO, [-v[2], -v[1], -v[0]])
|
|
|
|
# Accelerometer
|
|
if sensor_reading.sensor == 1 and sensor_reading.type == 1:
|
|
self.acc_counter += 1
|
|
if self.acc_counter % SENSOR_DECIMATION == 0:
|
|
v = sensor_reading.acceleration.v
|
|
self.update_kalman(current_time, ObservationKind.PHONE_ACCEL, [-v[2], -v[1], -v[0]])
|
|
|
|
def handle_live_calib(self, current_time, log):
|
|
self.calib = log.rpyCalib
|
|
self.device_from_calib = rot_from_euler(self.calib)
|
|
self.calib_from_device = self.device_from_calib.T
|
|
self.calibrated = log.calStatus == 1
|
|
|
|
def reset_kalman(self, current_time=None, init_orient=None):
|
|
self.filter_time = current_time
|
|
init_x = LiveKalman.initial_x
|
|
# too nonlinear to init on completely wrong
|
|
if init_orient is not None:
|
|
init_x[3:7] = init_orient
|
|
self.kf.init_state(init_x, covs=np.diag(LiveKalman.initial_P_diag), filter_time=current_time)
|
|
|
|
self.observation_buffer = []
|
|
|
|
self.gyro_counter = 0
|
|
self.acc_counter = 0
|
|
self.speed_counter = 0
|
|
self.cam_counter = 0
|
|
|
|
def locationd_thread(sm, pm, disabled_logs=[]):
|
|
if sm is None:
|
|
socks = ['gpsLocationExternal', 'sensorEvents', 'cameraOdometry', 'liveCalibration', 'carState']
|
|
sm = messaging.SubMaster(socks, ignore_alive=['gpsLocationExternal'])
|
|
if pm is None:
|
|
pm = messaging.PubMaster(['liveLocationKalman'])
|
|
|
|
localizer = Localizer(disabled_logs=disabled_logs)
|
|
camera_odometry_cnt = 0
|
|
|
|
while True:
|
|
sm.update()
|
|
|
|
for sock, updated in sm.updated.items():
|
|
if updated:
|
|
t = sm.logMonoTime[sock] * 1e-9
|
|
if sock == "sensorEvents":
|
|
localizer.handle_sensors(t, sm[sock])
|
|
elif sock == "gpsLocationExternal":
|
|
localizer.handle_gps(t, sm[sock])
|
|
elif sock == "carState":
|
|
localizer.handle_car_state(t, sm[sock])
|
|
elif sock == "cameraOdometry":
|
|
localizer.handle_cam_odo(t, sm[sock])
|
|
elif sock == "liveCalibration":
|
|
localizer.handle_live_calib(t, sm[sock])
|
|
|
|
if sm.updated['cameraOdometry']:
|
|
camera_odometry_cnt += 1
|
|
|
|
if camera_odometry_cnt % OUTPUT_DECIMATION == 0:
|
|
t = sm.logMonoTime['cameraOdometry']
|
|
msg = messaging.new_message('liveLocationKalman')
|
|
msg.logMonoTime = t
|
|
|
|
msg.liveLocationKalman = localizer.liveLocationMsg(t * 1e-9)
|
|
msg.liveLocationKalman.inputsOK = sm.all_alive_and_valid()
|
|
|
|
gps_age = (t / 1e9) - localizer.last_gps_fix
|
|
msg.liveLocationKalman.gpsOK = gps_age < 1.0
|
|
pm.send('liveLocationKalman', msg)
|
|
|
|
|
|
def main(sm=None, pm=None):
|
|
locationd_thread(sm, pm)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import os
|
|
os.environ["OMP_NUM_THREADS"] = "1"
|
|
main()
|
|
|