You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							64 lines
						
					
					
						
							1.7 KiB
						
					
					
				
			
		
		
	
	
							64 lines
						
					
					
						
							1.7 KiB
						
					
					
				#!/usr/bin/env python3
 | 
						|
import sys
 | 
						|
import numpy as np
 | 
						|
import matplotlib.pyplot as plt
 | 
						|
from sklearn import linear_model  # pylint: disable=import-error
 | 
						|
from selfdrive.car.toyota.values import STEER_THRESHOLD
 | 
						|
 | 
						|
from tools.lib.route import Route
 | 
						|
from tools.lib.logreader import MultiLogIterator
 | 
						|
 | 
						|
MIN_SAMPLES = 30 * 100
 | 
						|
 | 
						|
 | 
						|
def to_signed(n, bits):
 | 
						|
  if n >= (1 << max((bits - 1), 0)):
 | 
						|
    n = n - (1 << max(bits, 0))
 | 
						|
  return n
 | 
						|
 | 
						|
 | 
						|
def get_eps_factor(lr, plot=False):
 | 
						|
  engaged = False
 | 
						|
  steering_pressed = False
 | 
						|
  torque_cmd, eps_torque = None, None
 | 
						|
  cmds, eps = [], []
 | 
						|
 | 
						|
  for msg in lr:
 | 
						|
    if msg.which() != 'can':
 | 
						|
      continue
 | 
						|
 | 
						|
    for m in msg.can:
 | 
						|
      if m.address == 0x2e4 and m.src == 128:
 | 
						|
        engaged = bool(m.dat[0] & 1)
 | 
						|
        torque_cmd = to_signed((m.dat[1] << 8) | m.dat[2], 16)
 | 
						|
      elif m.address == 0x260 and m.src == 0:
 | 
						|
        eps_torque = to_signed((m.dat[5] << 8) | m.dat[6], 16)
 | 
						|
        steering_pressed = abs(to_signed((m.dat[1] << 8) | m.dat[2], 16)) > STEER_THRESHOLD
 | 
						|
 | 
						|
    if engaged and torque_cmd is not None and eps_torque is not None and not steering_pressed:
 | 
						|
      cmds.append(torque_cmd)
 | 
						|
      eps.append(eps_torque)
 | 
						|
    else:
 | 
						|
      if len(cmds) > MIN_SAMPLES:
 | 
						|
        break
 | 
						|
      cmds, eps = [], []
 | 
						|
 | 
						|
  if len(cmds) < MIN_SAMPLES:
 | 
						|
    raise Exception("too few samples found in route")
 | 
						|
 | 
						|
  lm = linear_model.LinearRegression(fit_intercept=False)
 | 
						|
  lm.fit(np.array(cmds).reshape(-1, 1), eps)
 | 
						|
  scale_factor = 1. / lm.coef_[0]
 | 
						|
 | 
						|
  if plot:
 | 
						|
    plt.plot(np.array(eps) * scale_factor)
 | 
						|
    plt.plot(cmds)
 | 
						|
    plt.show()
 | 
						|
  return scale_factor
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
  r = Route(sys.argv[1])
 | 
						|
  lr = MultiLogIterator(r.log_paths(), wraparound=False)
 | 
						|
  n = get_eps_factor(lr, plot="--plot" in sys.argv)
 | 
						|
  print("EPS torque factor: ", n)
 | 
						|
 |