openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

74 lines
3.2 KiB

import numpy as np
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, MIN_SPEED, get_speed_error
from openpilot.selfdrive.controls.lib.desire_helper import DesireHelper
import cereal.messaging as messaging
from cereal import log
TRAJECTORY_SIZE = 33
CAMERA_OFFSET = 0.04
class LateralPlanner:
def __init__(self, CP, debug=False):
self.DH = DesireHelper()
# Vehicle model parameters used to calculate lateral movement of car
self.factor1 = CP.wheelbase - CP.centerToFront
self.factor2 = (CP.centerToFront * CP.mass) / (CP.wheelbase * CP.tireStiffnessRear)
self.last_cloudlog_t = 0
self.solution_invalid_cnt = 0
self.path_xyz = np.zeros((TRAJECTORY_SIZE, 3))
self.velocity_xyz = np.zeros((TRAJECTORY_SIZE, 3))
self.v_plan = np.zeros((TRAJECTORY_SIZE,))
self.x_sol = np.zeros((TRAJECTORY_SIZE, 4), dtype=np.float32)
self.v_ego = MIN_SPEED
self.l_lane_change_prob = 0.0
self.r_lane_change_prob = 0.0
self.debug_mode = debug
def update(self, sm):
v_ego_car = sm['carState'].vEgo
# Parse model predictions
md = sm['modelV2']
if len(md.position.x) == TRAJECTORY_SIZE and len(md.velocity.x) == TRAJECTORY_SIZE and len(md.lateralPlannerSolution.x) == TRAJECTORY_SIZE:
self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z])
self.velocity_xyz = np.column_stack([md.velocity.x, md.velocity.y, md.velocity.z])
car_speed = np.linalg.norm(self.velocity_xyz, axis=1) - get_speed_error(md, v_ego_car)
self.v_plan = np.clip(car_speed, MIN_SPEED, np.inf)
self.v_ego = self.v_plan[0]
self.x_sol = np.column_stack([md.lateralPlannerSolution.x, md.lateralPlannerSolution.y, md.lateralPlannerSolution.yaw, md.lateralPlannerSolution.yawRate])
# Lane change logic
desire_state = md.meta.desireState
if len(desire_state):
self.l_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeLeft]
self.r_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeRight]
lane_change_prob = self.l_lane_change_prob + self.r_lane_change_prob
self.DH.update(sm['carState'], sm['carControl'].latActive, lane_change_prob)
def publish(self, sm, pm):
plan_send = messaging.new_message('lateralPlan')
plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2'])
lateralPlan = plan_send.lateralPlan
lateralPlan.modelMonoTime = sm.logMonoTime['modelV2']
lateralPlan.dPathPoints = self.path_xyz[:,1].tolist()
lateralPlan.psis = self.x_sol[0:CONTROL_N, 2].tolist()
lateralPlan.curvatures = (self.x_sol[0:CONTROL_N, 3]/self.v_ego).tolist()
lateralPlan.curvatureRates = [float(0) for _ in range(CONTROL_N-1)] # TODO: unused
lateralPlan.mpcSolutionValid = bool(1)
lateralPlan.solverExecutionTime = 0.0
if self.debug_mode:
lateralPlan.solverState = log.LateralPlan.SolverState.new_message()
lateralPlan.solverState.x = self.x_sol.tolist()
lateralPlan.desire = self.DH.desire
lateralPlan.useLaneLines = False
lateralPlan.laneChangeState = self.DH.lane_change_state
lateralPlan.laneChangeDirection = self.DH.lane_change_direction
pm.send('lateralPlan', plan_send)