You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							93 lines
						
					
					
						
							3.6 KiB
						
					
					
				
			
		
		
	
	
							93 lines
						
					
					
						
							3.6 KiB
						
					
					
				| import onnx
 | |
| import itertools
 | |
| import os
 | |
| import sys
 | |
| import numpy as np
 | |
| from typing import Tuple, Dict, Union, Any
 | |
| 
 | |
| from openpilot.selfdrive.modeld.runners.runmodel_pyx import RunModel
 | |
| 
 | |
| ORT_TYPES_TO_NP_TYPES = {'tensor(float16)': np.float16, 'tensor(float)': np.float32, 'tensor(uint8)': np.uint8}
 | |
| 
 | |
| def attributeproto_fp16_to_fp32(attr):
 | |
|   float32_list = np.frombuffer(attr.raw_data, dtype=np.float16)
 | |
|   attr.data_type = 1
 | |
|   attr.raw_data = float32_list.astype(np.float32).tobytes()
 | |
| 
 | |
| def convert_fp16_to_fp32(path):
 | |
|   model = onnx.load(path)
 | |
|   for i in model.graph.initializer:
 | |
|     if i.data_type == 10:
 | |
|       attributeproto_fp16_to_fp32(i)
 | |
|   for i in itertools.chain(model.graph.input, model.graph.output):
 | |
|     if i.type.tensor_type.elem_type == 10:
 | |
|       i.type.tensor_type.elem_type = 1
 | |
|   for i in model.graph.node:
 | |
|     for a in i.attribute:
 | |
|       if hasattr(a, 't'):
 | |
|         if a.t.data_type == 10:
 | |
|           attributeproto_fp16_to_fp32(a.t)
 | |
|   return model.SerializeToString()
 | |
| 
 | |
| def create_ort_session(path, fp16_to_fp32):
 | |
|   os.environ["OMP_NUM_THREADS"] = "4"
 | |
|   os.environ["OMP_WAIT_POLICY"] = "PASSIVE"
 | |
| 
 | |
|   import onnxruntime as ort
 | |
|   print("Onnx available providers: ", ort.get_available_providers(), file=sys.stderr)
 | |
|   options = ort.SessionOptions()
 | |
|   options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
 | |
| 
 | |
|   provider: Union[str, Tuple[str, Dict[Any, Any]]]
 | |
|   if 'OpenVINOExecutionProvider' in ort.get_available_providers() and 'ONNXCPU' not in os.environ:
 | |
|     provider = 'OpenVINOExecutionProvider'
 | |
|   elif 'CUDAExecutionProvider' in ort.get_available_providers() and 'ONNXCPU' not in os.environ:
 | |
|     options.intra_op_num_threads = 2
 | |
|     provider = ('CUDAExecutionProvider', {'cudnn_conv_algo_search': 'DEFAULT'})
 | |
|   else:
 | |
|     options.intra_op_num_threads = 2
 | |
|     options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
 | |
|     options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
 | |
|     provider = 'CPUExecutionProvider'
 | |
| 
 | |
|   model_data = convert_fp16_to_fp32(path) if fp16_to_fp32 else path
 | |
|   print("Onnx selected provider: ", [provider], file=sys.stderr)
 | |
|   ort_session = ort.InferenceSession(model_data, options, providers=[provider])
 | |
|   print("Onnx using ", ort_session.get_providers(), file=sys.stderr)
 | |
|   return ort_session
 | |
| 
 | |
| 
 | |
| class ONNXModel(RunModel):
 | |
|   def __init__(self, path, output, runtime, use_tf8, cl_context):
 | |
|     self.inputs = {}
 | |
|     self.output = output
 | |
|     self.use_tf8 = use_tf8
 | |
| 
 | |
|     self.session = create_ort_session(path, fp16_to_fp32=True)
 | |
|     self.input_names = [x.name for x in self.session.get_inputs()]
 | |
|     self.input_shapes = {x.name: [1, *x.shape[1:]] for x in self.session.get_inputs()}
 | |
|     self.input_dtypes = {x.name: ORT_TYPES_TO_NP_TYPES[x.type] for x in self.session.get_inputs()}
 | |
| 
 | |
|     # run once to initialize CUDA provider
 | |
|     if "CUDAExecutionProvider" in self.session.get_providers():
 | |
|       self.session.run(None, {k: np.zeros(self.input_shapes[k], dtype=self.input_dtypes[k]) for k in self.input_names})
 | |
|     print("ready to run onnx model", self.input_shapes, file=sys.stderr)
 | |
| 
 | |
|   def addInput(self, name, buffer):
 | |
|     assert name in self.input_names
 | |
|     self.inputs[name] = buffer
 | |
| 
 | |
|   def setInputBuffer(self, name, buffer):
 | |
|     assert name in self.inputs
 | |
|     self.inputs[name] = buffer
 | |
| 
 | |
|   def getCLBuffer(self, name):
 | |
|     return None
 | |
| 
 | |
|   def execute(self):
 | |
|     inputs = {k: (v.view(np.uint8) / 255. if self.use_tf8 and k == 'input_img' else v) for k,v in self.inputs.items()}
 | |
|     inputs = {k: v.reshape(self.input_shapes[k]).astype(self.input_dtypes[k]) for k,v in inputs.items()}
 | |
|     outputs = self.session.run(None, inputs)
 | |
|     assert len(outputs) == 1, "Only single model outputs are supported"
 | |
|     self.output[:] = outputs[0]
 | |
|     return self.output
 | |
| 
 |