openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

177 lines
6.2 KiB

import numpy as np
from typing import Any
from functools import cache
from cereal import log
from openpilot.common.transformations.orientation import rot_from_euler, euler_from_rot
@cache
def fft_next_good_size(n: int) -> int:
"""
smallest composite of 2, 3, 5, 7, 11 that is >= n
inspired by pocketfft
"""
if n <= 6:
return n
best, f2 = 2 * n, 1
while f2 < best:
f23 = f2
while f23 < best:
f235 = f23
while f235 < best:
f2357 = f235
while f2357 < best:
f235711 = f2357
while f235711 < best:
best = f235711 if f235711 >= n else best
f235711 *= 11
f2357 *= 7
f235 *= 5
f23 *= 3
f2 *= 2
return best
def parabolic_peak_interp(R, max_index):
if max_index == 0 or max_index == len(R) - 1:
return max_index
y_m1, y_0, y_p1 = R[max_index - 1], R[max_index], R[max_index + 1]
offset = 0.5 * (y_p1 - y_m1) / (2 * y_0 - y_p1 - y_m1)
return max_index + offset
def rotate_cov(rot_matrix, cov_in):
return rot_matrix @ cov_in @ rot_matrix.T
def rotate_std(rot_matrix, std_in):
return np.sqrt(np.diag(rotate_cov(rot_matrix, np.diag(std_in**2))))
class NPQueue:
def __init__(self, maxlen: int, rowsize: int) -> None:
self.maxlen = maxlen
self.arr = np.empty((0, rowsize))
def __len__(self) -> int:
return len(self.arr)
def append(self, pt: list[float]) -> None:
if len(self.arr) < self.maxlen:
self.arr = np.append(self.arr, [pt], axis=0)
else:
self.arr[:-1] = self.arr[1:]
self.arr[-1] = pt
class PointBuckets:
def __init__(self, x_bounds: list[tuple[float, float]], min_points: list[float], min_points_total: int, points_per_bucket: int, rowsize: int) -> None:
self.x_bounds = x_bounds
self.buckets = {bounds: NPQueue(maxlen=points_per_bucket, rowsize=rowsize) for bounds in x_bounds}
self.buckets_min_points = dict(zip(x_bounds, min_points, strict=True))
self.min_points_total = min_points_total
def __len__(self) -> int:
return sum([len(v) for v in self.buckets.values()])
def is_valid(self) -> bool:
individual_buckets_valid = all(len(v) >= min_pts for v, min_pts in zip(self.buckets.values(), self.buckets_min_points.values(), strict=True))
total_points_valid = self.__len__() >= self.min_points_total
return individual_buckets_valid and total_points_valid
def is_calculable(self) -> bool:
return all(len(v) > 0 for v in self.buckets.values())
def add_point(self, x: float, y: float) -> None:
raise NotImplementedError
def get_points(self, num_points: int = None) -> Any:
points = np.vstack([x.arr for x in self.buckets.values()])
if num_points is None:
return points
return points[np.random.choice(np.arange(len(points)), min(len(points), num_points), replace=False)]
def load_points(self, points: list[list[float]]) -> None:
for point in points:
self.add_point(*point)
class ParameterEstimator:
""" Base class for parameter estimators """
def reset(self) -> None:
raise NotImplementedError
def handle_log(self, t: int, which: str, msg: log.Event) -> None:
raise NotImplementedError
def get_msg(self, valid: bool, with_points: bool) -> log.Event:
raise NotImplementedError
class Measurement:
x, y, z = (property(lambda self: self.xyz[0]), property(lambda self: self.xyz[1]), property(lambda self: self.xyz[2]))
x_std, y_std, z_std = (property(lambda self: self.xyz_std[0]), property(lambda self: self.xyz_std[1]), property(lambda self: self.xyz_std[2]))
roll, pitch, yaw = x, y, z
roll_std, pitch_std, yaw_std = x_std, y_std, z_std
def __init__(self, xyz: np.ndarray, xyz_std: np.ndarray):
self.xyz: np.ndarray = xyz
self.xyz_std: np.ndarray = xyz_std
@classmethod
def from_measurement_xyz(cls, measurement: log.LivePose.XYZMeasurement) -> 'Measurement':
return cls(
xyz=np.array([measurement.x, measurement.y, measurement.z]),
xyz_std=np.array([measurement.xStd, measurement.yStd, measurement.zStd])
)
class Pose:
def __init__(self, orientation: Measurement, velocity: Measurement, acceleration: Measurement, angular_velocity: Measurement):
self.orientation = orientation
self.velocity = velocity
self.acceleration = acceleration
self.angular_velocity = angular_velocity
@classmethod
def from_live_pose(cls, live_pose: log.LivePose) -> 'Pose':
return Pose(
orientation=Measurement.from_measurement_xyz(live_pose.orientationNED),
velocity=Measurement.from_measurement_xyz(live_pose.velocityDevice),
acceleration=Measurement.from_measurement_xyz(live_pose.accelerationDevice),
angular_velocity=Measurement.from_measurement_xyz(live_pose.angularVelocityDevice)
)
class PoseCalibrator:
def __init__(self):
self.calib_valid = False
self.calib_from_device = np.eye(3)
def _transform_calib_from_device(self, meas: Measurement):
new_xyz = self.calib_from_device @ meas.xyz
new_xyz_std = rotate_std(self.calib_from_device, meas.xyz_std)
return Measurement(new_xyz, new_xyz_std)
def _ned_from_calib(self, orientation: Measurement):
ned_from_device = rot_from_euler(orientation.xyz)
ned_from_calib = ned_from_device @ self.calib_from_device.T
ned_from_calib_euler_meas = Measurement(euler_from_rot(ned_from_calib), np.full(3, np.nan))
return ned_from_calib_euler_meas
def build_calibrated_pose(self, pose: Pose) -> Pose:
ned_from_calib_euler = self._ned_from_calib(pose.orientation)
angular_velocity_calib = self._transform_calib_from_device(pose.angular_velocity)
acceleration_calib = self._transform_calib_from_device(pose.acceleration)
velocity_calib = self._transform_calib_from_device(pose.angular_velocity)
return Pose(ned_from_calib_euler, velocity_calib, acceleration_calib, angular_velocity_calib)
def feed_live_calib(self, live_calib: log.LiveCalibrationData):
calib_rpy = np.array(live_calib.rpyCalib)
device_from_calib = rot_from_euler(calib_rpy)
self.calib_from_device = device_from_calib.T
self.calib_valid = live_calib.calStatus == log.LiveCalibrationData.Status.calibrated