You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
114 lines
5.0 KiB
114 lines
5.0 KiB
import numpy as np
|
|
from openpilot.selfdrive.modeld.constants import ModelConstants
|
|
|
|
def safe_exp(x, out=None):
|
|
# -11 is around 10**14, more causes float16 overflow
|
|
return np.exp(np.clip(x, -np.inf, 11), out=out)
|
|
|
|
def sigmoid(x):
|
|
return 1. / (1. + safe_exp(-x))
|
|
|
|
def softmax(x, axis=-1):
|
|
x -= np.max(x, axis=axis, keepdims=True)
|
|
if x.dtype == np.float32 or x.dtype == np.float64:
|
|
safe_exp(x, out=x)
|
|
else:
|
|
x = safe_exp(x)
|
|
x /= np.sum(x, axis=axis, keepdims=True)
|
|
return x
|
|
|
|
class Parser:
|
|
def __init__(self, ignore_missing=False):
|
|
self.ignore_missing = ignore_missing
|
|
|
|
def check_missing(self, outs, name):
|
|
if name not in outs and not self.ignore_missing:
|
|
raise ValueError(f"Missing output {name}")
|
|
return name not in outs
|
|
|
|
def parse_categorical_crossentropy(self, name, outs, out_shape=None):
|
|
if self.check_missing(outs, name):
|
|
return
|
|
raw = outs[name]
|
|
if out_shape is not None:
|
|
raw = raw.reshape((raw.shape[0],) + out_shape)
|
|
outs[name] = softmax(raw, axis=-1)
|
|
|
|
def parse_binary_crossentropy(self, name, outs):
|
|
if self.check_missing(outs, name):
|
|
return
|
|
raw = outs[name]
|
|
outs[name] = sigmoid(raw)
|
|
|
|
def parse_mdn(self, name, outs, in_N=0, out_N=1, out_shape=None):
|
|
if self.check_missing(outs, name):
|
|
return
|
|
raw = outs[name]
|
|
raw = raw.reshape((raw.shape[0], max(in_N, 1), -1))
|
|
|
|
n_values = (raw.shape[2] - out_N)//2
|
|
pred_mu = raw[:,:,:n_values]
|
|
pred_std = safe_exp(raw[:,:,n_values: 2*n_values])
|
|
|
|
if in_N > 1:
|
|
weights = np.zeros((raw.shape[0], in_N, out_N), dtype=raw.dtype)
|
|
for i in range(out_N):
|
|
weights[:,:,i - out_N] = softmax(raw[:,:,i - out_N], axis=-1)
|
|
|
|
if out_N == 1:
|
|
for fidx in range(weights.shape[0]):
|
|
idxs = np.argsort(weights[fidx][:,0])[::-1]
|
|
weights[fidx] = weights[fidx][idxs]
|
|
pred_mu[fidx] = pred_mu[fidx][idxs]
|
|
pred_std[fidx] = pred_std[fidx][idxs]
|
|
full_shape = tuple([raw.shape[0], in_N] + list(out_shape))
|
|
outs[name + '_weights'] = weights
|
|
outs[name + '_hypotheses'] = pred_mu.reshape(full_shape)
|
|
outs[name + '_stds_hypotheses'] = pred_std.reshape(full_shape)
|
|
|
|
pred_mu_final = np.zeros((raw.shape[0], out_N, n_values), dtype=raw.dtype)
|
|
pred_std_final = np.zeros((raw.shape[0], out_N, n_values), dtype=raw.dtype)
|
|
for fidx in range(weights.shape[0]):
|
|
for hidx in range(out_N):
|
|
idxs = np.argsort(weights[fidx,:,hidx])[::-1]
|
|
pred_mu_final[fidx, hidx] = pred_mu[fidx, idxs[0]]
|
|
pred_std_final[fidx, hidx] = pred_std[fidx, idxs[0]]
|
|
else:
|
|
pred_mu_final = pred_mu
|
|
pred_std_final = pred_std
|
|
|
|
if out_N > 1:
|
|
final_shape = tuple([raw.shape[0], out_N] + list(out_shape))
|
|
else:
|
|
final_shape = tuple([raw.shape[0],] + list(out_shape))
|
|
outs[name] = pred_mu_final.reshape(final_shape)
|
|
outs[name + '_stds'] = pred_std_final.reshape(final_shape)
|
|
|
|
def parse_vision_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]:
|
|
self.parse_mdn('pose', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
|
|
self.parse_mdn('wide_from_device_euler', outs, in_N=0, out_N=0, out_shape=(ModelConstants.WIDE_FROM_DEVICE_WIDTH,))
|
|
self.parse_mdn('road_transform', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
|
|
self.parse_mdn('lane_lines', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_LANE_LINES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH))
|
|
self.parse_mdn('road_edges', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_ROAD_EDGES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH))
|
|
self.parse_mdn('lead', outs, in_N=ModelConstants.LEAD_MHP_N, out_N=ModelConstants.LEAD_MHP_SELECTION,
|
|
out_shape=(ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH))
|
|
for k in ['lead_prob', 'lane_lines_prob']:
|
|
self.parse_binary_crossentropy(k, outs)
|
|
self.parse_categorical_crossentropy('desire_pred', outs, out_shape=(ModelConstants.DESIRE_PRED_LEN,ModelConstants.DESIRE_PRED_WIDTH))
|
|
self.parse_binary_crossentropy('meta', outs)
|
|
return outs
|
|
|
|
def parse_policy_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]:
|
|
self.parse_mdn('plan', outs, in_N=ModelConstants.PLAN_MHP_N, out_N=ModelConstants.PLAN_MHP_SELECTION,
|
|
out_shape=(ModelConstants.IDX_N,ModelConstants.PLAN_WIDTH))
|
|
if 'lat_planner_solution' in outs:
|
|
self.parse_mdn('lat_planner_solution', outs, in_N=0, out_N=0, out_shape=(ModelConstants.IDX_N,ModelConstants.LAT_PLANNER_SOLUTION_WIDTH))
|
|
if 'desired_curvature' in outs:
|
|
self.parse_mdn('desired_curvature', outs, in_N=0, out_N=0, out_shape=(ModelConstants.DESIRED_CURV_WIDTH,))
|
|
self.parse_categorical_crossentropy('desire_state', outs, out_shape=(ModelConstants.DESIRE_PRED_WIDTH,))
|
|
return outs
|
|
|
|
def parse_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]:
|
|
outs = self.parse_vision_outputs(outs)
|
|
outs = self.parse_policy_outputs(outs)
|
|
return outs
|
|
|