openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

311 lines
12 KiB

#!/usr/bin/env python3
import os
import sys
from collections import defaultdict
from typing import Any
import tempfile
from itertools import zip_longest
import matplotlib.pyplot as plt
import numpy as np
from tabulate import tabulate
from openpilot.common.git import get_commit
from openpilot.system.hardware import PC
from openpilot.tools.lib.openpilotci import get_url
from openpilot.selfdrive.test.process_replay.compare_logs import compare_logs, format_diff
from openpilot.selfdrive.test.process_replay.process_replay import get_process_config, replay_process
from openpilot.tools.lib.framereader import FrameReader, NumpyFrameReader
from openpilot.tools.lib.logreader import LogReader, save_log
from openpilot.tools.lib.github_utils import GithubUtils
TEST_ROUTE = "8494c69d3c710e81|000001d4--2648a9a404"
SEGMENT = 4
MAX_FRAMES = 100 if PC else 400
NO_MODEL = "NO_MODEL" in os.environ
SEND_EXTRA_INPUTS = bool(int(os.getenv("SEND_EXTRA_INPUTS", "0")))
DATA_TOKEN = os.getenv("CI_ARTIFACTS_TOKEN","")
API_TOKEN = os.getenv("GITHUB_COMMENTS_TOKEN","")
MODEL_REPLAY_BUCKET="model_replay_master"
GITHUB = GithubUtils(API_TOKEN, DATA_TOKEN)
EXEC_TIMINGS = [
# model, instant max, average max
("modelV2", 0.035, 0.025),
("driverStateV2", 0.02, 0.015),
]
def get_log_fn(test_route, ref="master"):
return f"{test_route}_model_tici_{ref}.zst"
def plot(proposed, master, title, tmp):
proposed = list(proposed)
master = list(master)
fig, ax = plt.subplots()
ax.plot(master, label='MASTER')
ax.plot(proposed, label='PROPOSED')
plt.legend(loc='best')
plt.title(title)
plt.savefig(f'{tmp}/{title}.png')
return (title + '.png', proposed == master)
def get_event(logs, event):
return (getattr(m, m.which()) for m in filter(lambda m: m.which() == event, logs))
def zl(array, fill):
return zip_longest(array, [], fillvalue=fill)
def get_idx_if_non_empty(l, idx=None):
return l if idx is None else (l[idx] if len(l) > 0 else None)
def generate_report(proposed, master, tmp, commit):
ModelV2_Plots = zl([
(lambda x: get_idx_if_non_empty(x.velocity.x, 0), "velocity.x"),
(lambda x: get_idx_if_non_empty(x.action.desiredCurvature), "desiredCurvature"),
(lambda x: get_idx_if_non_empty(x.action.desiredAcceleration), "desiredAcceleration"),
(lambda x: get_idx_if_non_empty(x.leadsV3[0].x, 0), "leadsV3.x"),
(lambda x: get_idx_if_non_empty(x.laneLines[1].y, 0), "laneLines.y"),
(lambda x: get_idx_if_non_empty(x.meta.desireState, 3), "desireState.laneChangeLeft"),
(lambda x: get_idx_if_non_empty(x.meta.desireState, 4), "desireState.laneChangeRight"),
(lambda x: get_idx_if_non_empty(x.meta.disengagePredictions.gasPressProbs, 1), "gasPressProbs")
], "modelV2")
DriverStateV2_Plots = zl([
(lambda x: get_idx_if_non_empty(x.wheelOnRightProb), "wheelOnRightProb"),
(lambda x: get_idx_if_non_empty(x.leftDriverData.faceProb), "leftDriverData.faceProb"),
(lambda x: get_idx_if_non_empty(x.leftDriverData.faceOrientation, 0), "leftDriverData.faceOrientation0"),
(lambda x: get_idx_if_non_empty(x.leftDriverData.leftBlinkProb), "leftDriverData.leftBlinkProb"),
(lambda x: get_idx_if_non_empty(x.leftDriverData.notReadyProb, 0), "leftDriverData.notReadyProb0"),
(lambda x: get_idx_if_non_empty(x.rightDriverData.faceProb), "rightDriverData.faceProb"),
], "driverStateV2")
return [plot(map(v[0], get_event(proposed, event)), \
map(v[0], get_event(master, event)), f"{v[1]}_{commit[:7]}", tmp) \
for v,event in ([*ModelV2_Plots] + [*DriverStateV2_Plots])]
def create_table(title, files, link, open_table=False):
if not files:
return ""
table = [f'<details {"open" if open_table else ""}><summary>{title}</summary><table>']
for i,f in enumerate(files):
if not (i % 2):
table.append("<tr>")
table.append(f'<td><img src=\\"{link}/{f[0]}\\"></td>')
if (i % 2):
table.append("</tr>")
table.append("</table></details>")
table = "".join(table)
return table
def comment_replay_report(proposed, master, full_logs):
with tempfile.TemporaryDirectory() as tmp:
PR_BRANCH = os.getenv("GIT_BRANCH","")
DATA_BUCKET = f"model_replay_{PR_BRANCH}"
try:
GITHUB.get_pr_number(PR_BRANCH)
except Exception:
print("No PR associated with this branch. Skipping report.")
return
commit = get_commit()
files = generate_report(proposed, master, tmp, commit)
GITHUB.upload_files(DATA_BUCKET, [(x[0], tmp + '/' + x[0]) for x in files])
log_name = get_log_fn(TEST_ROUTE, commit)
save_log(log_name, full_logs)
GITHUB.upload_file(DATA_BUCKET, os.path.basename(log_name), log_name)
diff_files = [x for x in files if not x[1]]
link = GITHUB.get_bucket_link(DATA_BUCKET)
diff_plots = create_table("Model Replay Differences", diff_files, link, open_table=True)
all_plots = create_table("All Model Replay Plots", files, link)
comment = f"ref for commit {commit}: {link}/{log_name}" + diff_plots + all_plots
GITHUB.comment_on_pr(comment, PR_BRANCH)
def trim_logs_to_max_frames(logs, max_frames, frs_types, include_all_types):
all_msgs = []
cam_state_counts = defaultdict(int)
# keep adding messages until cam states are equal to MAX_FRAMES
for msg in sorted(logs, key=lambda m: m.logMonoTime):
all_msgs.append(msg)
if msg.which() in frs_types:
cam_state_counts[msg.which()] += 1
if all(cam_state_counts[state] == max_frames for state in frs_types):
break
if len(include_all_types) != 0:
other_msgs = [m for m in logs if m.which() in include_all_types]
all_msgs.extend(other_msgs)
return all_msgs
def model_replay(lr, frs):
# modeld is using frame pairs
modeld_logs = trim_logs_to_max_frames(lr, MAX_FRAMES, {"roadCameraState", "wideRoadCameraState"},
{"roadEncodeIdx", "wideRoadEncodeIdx", "carParams", "carState", "carControl"})
dmodeld_logs = trim_logs_to_max_frames(lr, MAX_FRAMES, {"driverCameraState"}, {"driverEncodeIdx", "carParams"})
if not SEND_EXTRA_INPUTS:
modeld_logs = [msg for msg in modeld_logs if msg.which() != 'liveCalibration']
dmodeld_logs = [msg for msg in dmodeld_logs if msg.which() != 'liveCalibration']
# initial setup
for s in ('liveCalibration', 'deviceState'):
msg = next(msg for msg in lr if msg.which() == s).as_builder()
msg.logMonoTime = lr[0].logMonoTime
modeld_logs.insert(1, msg.as_reader())
dmodeld_logs.insert(1, msg.as_reader())
modeld = get_process_config("modeld")
dmonitoringmodeld = get_process_config("dmonitoringmodeld")
modeld_msgs = replay_process(modeld, modeld_logs, frs)
if isinstance(frs['roadCameraState'], NumpyFrameReader):
del frs['roadCameraState'].frames
del frs['wideRoadCameraState'].frames
dmonitoringmodeld_msgs = replay_process(dmonitoringmodeld, dmodeld_logs, frs)
msgs = modeld_msgs + dmonitoringmodeld_msgs
header = ['model', 'max instant', 'max instant allowed', 'average', 'max average allowed', 'test result']
rows = []
timings_ok = True
for (s, instant_max, avg_max) in EXEC_TIMINGS:
ts = [getattr(m, s).modelExecutionTime for m in msgs if m.which() == s]
# TODO some init can happen in first iteration
ts = ts[1:]
errors = []
if np.max(ts) > instant_max:
errors.append("❌ FAILED MAX TIMING CHECK ❌")
if np.mean(ts) > avg_max:
errors.append("❌ FAILED AVG TIMING CHECK ❌")
timings_ok = not errors and timings_ok
rows.append([s, np.max(ts), instant_max, np.mean(ts), avg_max, "\n".join(errors) or ""])
print("------------------------------------------------")
print("----------------- Model Timing -----------------")
print("------------------------------------------------")
print(tabulate(rows, header, tablefmt="simple_grid", stralign="center", numalign="center", floatfmt=".4f"))
assert timings_ok
return msgs
def get_frames():
regen_cache = "--regen-cache" in sys.argv
cache = "--cache" in sys.argv or not PC or regen_cache
videos = ('fcamera.hevc', 'dcamera.hevc', 'ecamera.hevc')
cams = ('roadCameraState', 'driverCameraState', 'wideRoadCameraState')
if cache:
frames_cache = '/tmp/model_replay_cache' if PC else '/data/model_replay_cache'
os.makedirs(frames_cache, exist_ok=True)
cache_size = 200
for v in videos:
if not all(os.path.isfile(f'{frames_cache}/{TEST_ROUTE}_{v}_{i}.npy') for i in range(MAX_FRAMES//cache_size)) or regen_cache:
f = FrameReader(get_url(TEST_ROUTE, SEGMENT, v)).get(0, MAX_FRAMES + 1, pix_fmt="nv12")
print(f'Caching {v}...')
for i in range(MAX_FRAMES//cache_size):
np.save(f'{frames_cache}/{TEST_ROUTE}_{v}_{i}', f[(i * cache_size) + 1:((i + 1) * cache_size) + 1])
del f
return {c : NumpyFrameReader(f"{frames_cache}/{TEST_ROUTE}_{v}", 1928, 1208, cache_size) for c,v in zip(cams, videos, strict=True)}
else:
return {c : FrameReader(get_url(TEST_ROUTE, SEGMENT, v), readahead=True) for c,v in zip(cams, videos, strict=True)}
if __name__ == "__main__":
update = "--update" in sys.argv or (os.getenv("GIT_BRANCH", "") == 'master')
replay_dir = os.path.dirname(os.path.abspath(__file__))
# load logs
lr = list(LogReader(get_url(TEST_ROUTE, SEGMENT, "rlog.zst")))
frs = get_frames()
log_msgs = []
# run replays
if not NO_MODEL:
log_msgs += model_replay(lr, frs)
# get diff
failed = False
if not update:
log_fn = get_log_fn(TEST_ROUTE)
try:
all_logs = list(LogReader(GITHUB.get_file_url(MODEL_REPLAY_BUCKET, log_fn)))
cmp_log = []
# logs are ordered based on type: modelV2, drivingModelData, driverStateV2
if not NO_MODEL:
model_start_index = next(i for i, m in enumerate(all_logs) if m.which() in ("modelV2", "drivingModelData", "cameraOdometry"))
cmp_log += all_logs[model_start_index:model_start_index + MAX_FRAMES*3]
dmon_start_index = next(i for i, m in enumerate(all_logs) if m.which() == "driverStateV2")
cmp_log += all_logs[dmon_start_index:dmon_start_index + MAX_FRAMES]
ignore = [
'logMonoTime',
'drivingModelData.frameDropPerc',
'drivingModelData.modelExecutionTime',
'modelV2.frameDropPerc',
'modelV2.modelExecutionTime',
'driverStateV2.modelExecutionTime',
'driverStateV2.gpuExecutionTime'
]
if PC:
# TODO We ignore whole bunch so we can compare important stuff
# like posenet with reasonable tolerance
ignore += ['modelV2.acceleration.x',
'modelV2.position.x',
'modelV2.position.xStd',
'modelV2.position.y',
'modelV2.position.yStd',
'modelV2.position.z',
'modelV2.position.zStd',
'drivingModelData.path.xCoefficients',]
for i in range(3):
for field in ('x', 'y', 'v', 'a'):
ignore.append(f'modelV2.leadsV3.{i}.{field}')
ignore.append(f'modelV2.leadsV3.{i}.{field}Std')
for i in range(4):
for field in ('x', 'y', 'z', 't'):
ignore.append(f'modelV2.laneLines.{i}.{field}')
for i in range(2):
for field in ('x', 'y', 'z', 't'):
ignore.append(f'modelV2.roadEdges.{i}.{field}')
tolerance = .3 if PC else None
results: Any = {TEST_ROUTE: {}}
log_paths: Any = {TEST_ROUTE: {"models": {'ref': log_fn, 'new': log_fn}}}
results[TEST_ROUTE]["models"] = compare_logs(cmp_log, log_msgs, tolerance=tolerance, ignore_fields=ignore)
diff_short, diff_long, failed = format_diff(results, log_paths, 'master')
if "CI" in os.environ:
comment_replay_report(log_msgs, cmp_log, log_msgs)
failed = False
print(diff_long)
print('-------------\n'*5)
print(diff_short)
with open("model_diff.txt", "w") as f:
f.write(diff_long)
except Exception as e:
print(str(e))
failed = True
# upload new refs
if update and not PC:
print("Uploading new refs")
log_fn = get_log_fn(TEST_ROUTE)
save_log(log_fn, log_msgs)
try:
GITHUB.upload_file(MODEL_REPLAY_BUCKET, os.path.basename(log_fn), log_fn)
except Exception as e:
print("failed to upload", e)
sys.exit(int(failed))