openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

117 lines
3.7 KiB

#pragma once
#include <cassert>
#include <cstdint>
#include <map>
#include <utility>
#include <vector>
#include "media/cam_isp.h"
#include "media/cam_sensor.h"
#include "cereal/gen/cpp/log.capnp.h"
#include "system/camerad/sensors/ar0231_registers.h"
#include "system/camerad/sensors/ox03c10_registers.h"
#include "system/camerad/sensors/os04c10_registers.h"
#define ANALOG_GAIN_MAX_CNT 55
class SensorInfo {
public:
SensorInfo() = default;
virtual std::vector<i2c_random_wr_payload> getExposureRegisters(int exposure_time, int new_exp_g, bool dc_gain_enabled) const { return {}; }
virtual float getExposureScore(float desired_ev, int exp_t, int exp_g_idx, float exp_gain, int gain_idx) const {return 0; }
virtual int getSlaveAddress(int port) const { assert(0); }
cereal::FrameData::ImageSensor image_sensor = cereal::FrameData::ImageSensor::UNKNOWN;
float pixel_size_mm;
uint32_t frame_width, frame_height;
uint32_t frame_stride;
uint32_t frame_offset = 0;
uint32_t extra_height = 0;
int out_scale = 1;
int registers_offset = -1;
int stats_offset = -1;
int hdr_offset = -1;
int exposure_time_min;
int exposure_time_max;
float dc_gain_factor;
int dc_gain_min_weight;
int dc_gain_max_weight;
float dc_gain_on_grey;
float dc_gain_off_grey;
float ev_scale = 1.0;
float sensor_analog_gains[ANALOG_GAIN_MAX_CNT];
int analog_gain_min_idx;
int analog_gain_max_idx;
int analog_gain_rec_idx;
int analog_gain_cost_delta;
float analog_gain_cost_low;
float analog_gain_cost_high;
float target_grey_factor;
float min_ev;
float max_ev;
bool data_word;
uint32_t probe_reg_addr;
uint32_t probe_expected_data;
std::vector<i2c_random_wr_payload> start_reg_array;
std::vector<i2c_random_wr_payload> init_reg_array;
uint32_t bits_per_pixel;
uint32_t bayer_pattern;
uint32_t mipi_format;
uint32_t mclk_frequency;
uint32_t frame_data_type;
uint32_t readout_time_ns; // used to recover EOF from SOF
// ISP image processing params
uint32_t black_level;
std::vector<uint32_t> color_correct_matrix; // 3x3
std::vector<uint32_t> gamma_lut_rgb; // gamma LUTs are length 64 * sizeof(uint32_t); same for r/g/b here
void prepare_gamma_lut() {
for (int i = 0; i < 64; i++) {
gamma_lut_rgb[i] |= ((uint32_t)(gamma_lut_rgb[i+1] - gamma_lut_rgb[i]) << 10);
}
gamma_lut_rgb.pop_back();
}
std::vector<uint32_t> linearization_lut; // length 36
std::vector<uint32_t> linearization_pts; // length 4
std::vector<uint32_t> vignetting_lut; // length 221
const int num() const {
return static_cast<int>(image_sensor);
};
};
class AR0231 : public SensorInfo {
public:
AR0231();
std::vector<i2c_random_wr_payload> getExposureRegisters(int exposure_time, int new_exp_g, bool dc_gain_enabled) const override;
float getExposureScore(float desired_ev, int exp_t, int exp_g_idx, float exp_gain, int gain_idx) const override;
int getSlaveAddress(int port) const override;
private:
mutable std::map<uint16_t, std::pair<int, int>> ar0231_register_lut;
};
class OX03C10 : public SensorInfo {
public:
OX03C10();
std::vector<i2c_random_wr_payload> getExposureRegisters(int exposure_time, int new_exp_g, bool dc_gain_enabled) const override;
float getExposureScore(float desired_ev, int exp_t, int exp_g_idx, float exp_gain, int gain_idx) const override;
int getSlaveAddress(int port) const override;
};
class OS04C10 : public SensorInfo {
public:
OS04C10();
void ife_downscale_configure();
std::vector<i2c_random_wr_payload> getExposureRegisters(int exposure_time, int new_exp_g, bool dc_gain_enabled) const override;
float getExposureScore(float desired_ev, int exp_t, int exp_g_idx, float exp_gain, int gain_idx) const override;
int getSlaveAddress(int port) const override;
};