openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

148 lines
4.5 KiB

import unittest
from tinygrad import Tensor, nn, Variable, UOp, dtypes
# outerworld range should support three things
# 1. full optimizer steps (test_model_bound_range)
# 2. gradient accumulation (you want to end the range before running the optimizer)
# 3. stacked linear layers
class Model:
def __init__(self): self.w = nn.Linear(64, 8, bias=False)
def __call__(self, x:Tensor) -> Tensor: return self.w(x)
def get_model_and_opt():
Tensor.manual_seed(1337)
m = Model()
opt = nn.optim.SGD(nn.state.get_parameters(m), lr=0.1, weight_decay=0)
return m, opt
class TestOuterworldRange(unittest.TestCase):
STEPS = 5
BS = 20
@classmethod
def setUpClass(cls):
Tensor.manual_seed(1338)
# it learns to compute mean
cls.X = Tensor.randn(cls.STEPS, cls.BS, 64).contiguous().realize()
cls.Y = cls.X.reshape(cls.STEPS, cls.BS, 8, 8).mean(axis=-1).contiguous().realize()
cls.losses = cls._get_model_baseline()
def _compare(self, losses):
for i,(x,y) in enumerate(zip(self.losses, losses)):
self.assertAlmostEqual(x, y, places=5, msg=f"mismatch at {i} in {self.losses} vs {losses}")
@classmethod
@Tensor.train()
def _get_model_baseline(self):
m, opt = get_model_and_opt()
losses = []
for i in range(self.STEPS):
opt.zero_grad()
loss = (m(self.X[i]) - self.Y[i]).square().mean()
loss.backward()
loss.realize(*opt.schedule_step())
losses.append(loss.item())
return losses
@Tensor.train()
def test_model_grad_acc(self):
m, opt = get_model_and_opt()
losses = []
for i in range(self.STEPS):
opt.zero_grad()
sub_batch_size = self.BS//2
loss = 0
scaling_factor = self.BS//sub_batch_size
for j in range(0, self.BS, sub_batch_size):
sub_loss = (m(self.X[i][j:j+sub_batch_size]) - self.Y[i][j:j+sub_batch_size]).square().mean() / scaling_factor
sub_loss.backward()
loss += sub_loss
loss.realize(*opt.schedule_step())
losses.append(loss.item())
self._compare(losses)
@Tensor.train()
def test_model_variable(self):
m, opt = get_model_and_opt()
losses = []
vi = Variable('i', 0, self.STEPS-1)
for i in range(self.STEPS):
vib = vi.bind(i)
opt.zero_grad()
loss = (m(self.X[vib]) - self.Y[vib]).square().mean()
loss.backward()
loss.realize(*opt.schedule_step())
losses.append(loss.item())
self._compare(losses)
@Tensor.train()
def test_model_scheduled(self):
m, opt = get_model_and_opt()
losses = []
for i in range(self.STEPS):
opt.zero_grad()
loss = (m(self.X[i]) - self.Y[i]).square().mean()
loss.backward()
opt.schedule_step()
losses.append(loss)
self._compare(Tensor.stack(*losses).tolist())
@Tensor.train()
def test_model_scheduled_setitem(self):
m, opt = get_model_and_opt()
losses = Tensor.empty(self.STEPS)
for i in range(self.STEPS):
opt.zero_grad()
loss = (m(self.X[i]) - self.Y[i]).square().mean()
loss.backward()
opt.schedule_step()
# TODO: this shouldn't realize
losses[i] = loss.requires_grad_(False)
self._compare(losses.tolist())
@unittest.expectedFailure
@Tensor.train()
def test_model_scheduled_variable(self):
m, opt = get_model_and_opt()
losses = []
vi = Variable('i', 0, self.STEPS-1)
for i in range(self.STEPS):
vib = vi.bind(i)
opt.zero_grad()
loss = (m(self.X[vib]) - self.Y[vib]).square().mean()
loss.backward()
opt.schedule_step()
losses.append(loss)
self._compare(Tensor.stack(*losses).tolist())
@unittest.expectedFailure
@Tensor.train()
def test_model_scheduled_variable_setitem(self):
m, opt = get_model_and_opt()
losses = Tensor.empty(self.STEPS)
vi = Variable('i', 0, self.STEPS-1)
for i in range(self.STEPS):
vib = vi.bind(i)
opt.zero_grad()
loss = (m(self.X[vib]) - self.Y[vib]).square().mean()
loss.backward()
opt.schedule_step()
losses[vib] = loss.requires_grad_(False)
self._compare(losses.tolist())
@unittest.expectedFailure
@Tensor.train()
def test_model_bound_range(self):
m, opt = get_model_and_opt()
# TODO: should ranges be unique so you don't have to pass in the -1?
rng = UOp.range(dtypes.int, self.STEPS, -1)
vib = Variable('i', 0, self.STEPS-1).bind(rng)
loss = (m(self.X[vib]) - self.Y[vib]).square().mean()
loss.backward()
losses = Tensor.empty(self.STEPS)
losses[vib] = loss
losses.realize(*opt.schedule_step())
if __name__ == "__main__":
unittest.main()