openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

128 lines
3.8 KiB

#!/usr/bin/env python
import numpy as np
import loc_local_model
from kalman_helpers import ObservationKind
from ekf_sym import EKF_sym
class States(object):
VELOCITY = slice(0,3) # device frame velocity in m/s
ANGULAR_VELOCITY = slice(3, 6) # roll, pitch and yaw rates in device frame in radians/s
GYRO_BIAS = slice(6, 9) # roll, pitch and yaw biases
ODO_SCALE = slice(9, 10) # odometer scale
ACCELERATION = slice(10, 13) # Acceleration in device frame in m/s**2
class LocLocalKalman(object):
def __init__(self):
x_initial = np.array([0, 0, 0,
0, 0, 0,
0, 0, 0,
1,
0, 0, 0])
# state covariance
P_initial = np.diag([10**2, 10**2, 10**2,
1**2, 1**2, 1**2,
0.05**2, 0.05**2, 0.05**2,
0.02**2,
1**2, 1**2, 1**2])
# process noise
Q = np.diag([0.0**2, 0.0**2, 0.0**2,
.01**2, .01**2, .01**2,
(0.005/100)**2, (0.005/100)**2, (0.005/100)**2,
(0.02/100)**2,
3**2, 3**2, 3**2])
self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2),
ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2])}
# MSCKF stuff
self.dim_state = len(x_initial)
self.dim_main = self.dim_state
name = 'loc_local'
loc_local_model.gen_model(name, self.dim_state)
# init filter
self.filter = EKF_sym(name, Q, x_initial, P_initial, self.dim_main, self.dim_main)
@property
def x(self):
return self.filter.state()
@property
def t(self):
return self.filter.filter_time
@property
def P(self):
return self.filter.covs()
def predict(self, t):
if self.t:
# Does NOT modify filter state
return self.filter._predict(self.x, self.P, t - self.t)[0]
else:
raise RuntimeError("Request predict on filter with uninitialized time")
def rts_smooth(self, estimates):
return self.filter.rts_smooth(estimates, norm_quats=True)
def init_state(self, state, covs_diag=None, covs=None, filter_time=None):
if covs_diag is not None:
P = np.diag(covs_diag)
elif covs is not None:
P = covs
else:
P = self.filter.covs()
self.filter.init_state(state, P, filter_time)
def predict_and_observe(self, t, kind, data):
if len(data) > 0:
data = np.atleast_2d(data)
if kind == ObservationKind.CAMERA_ODO_TRANSLATION:
r = self.predict_and_update_odo_trans(data, t, kind)
elif kind == ObservationKind.CAMERA_ODO_ROTATION:
r = self.predict_and_update_odo_rot(data, t, kind)
elif kind == ObservationKind.ODOMETRIC_SPEED:
r = self.predict_and_update_odo_speed(data, t, kind)
else:
r = self.filter.predict_and_update_batch(t, kind, data, self.get_R(kind, len(data)))
return r
def get_R(self, kind, n):
obs_noise = self.obs_noise[kind]
dim = obs_noise.shape[0]
R = np.zeros((n, dim, dim))
for i in xrange(n):
R[i,:,:] = obs_noise
return R
def predict_and_update_odo_speed(self, speed, t, kind):
z = np.array(speed)
R = np.zeros((len(speed), 1, 1))
for i, _ in enumerate(z):
R[i,:,:] = np.diag([0.2**2])
return self.filter.predict_and_update_batch(t, kind, z, R)
def predict_and_update_odo_trans(self, trans, t, kind):
z = trans[:,:3]
R = np.zeros((len(trans), 3, 3))
for i, _ in enumerate(z):
R[i,:,:] = np.diag(trans[i,3:]**2)
return self.filter.predict_and_update_batch(t, kind, z, R)
def predict_and_update_odo_rot(self, rot, t, kind):
z = rot[:,:3]
R = np.zeros((len(rot), 3, 3))
for i, _ in enumerate(z):
R[i,:,:] = np.diag(rot[i,3:]**2)
return self.filter.predict_and_update_batch(t, kind, z, R)
if __name__ == "__main__":
LocLocalKalman()