You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							201 lines
						
					
					
						
							8.9 KiB
						
					
					
				
			
		
		
	
	
							201 lines
						
					
					
						
							8.9 KiB
						
					
					
				| #!/usr/bin/env python3
 | |
| import math
 | |
| import numpy as np
 | |
| 
 | |
| import cereal.messaging as messaging
 | |
| from opendbc.car.interfaces import ACCEL_MIN, ACCEL_MAX
 | |
| from openpilot.common.constants import CV
 | |
| from openpilot.common.filter_simple import FirstOrderFilter
 | |
| from openpilot.common.realtime import DT_MDL
 | |
| from openpilot.selfdrive.modeld.constants import ModelConstants
 | |
| from openpilot.selfdrive.controls.lib.longcontrol import LongCtrlState
 | |
| from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc
 | |
| from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC
 | |
| from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, get_accel_from_plan
 | |
| from openpilot.selfdrive.car.cruise import V_CRUISE_MAX, V_CRUISE_UNSET
 | |
| from openpilot.common.swaglog import cloudlog
 | |
| 
 | |
| LON_MPC_STEP = 0.2  # first step is 0.2s
 | |
| A_CRUISE_MAX_VALS = [1.6, 1.2, 0.8, 0.6]
 | |
| A_CRUISE_MAX_BP = [0., 10.0, 25., 40.]
 | |
| CONTROL_N_T_IDX = ModelConstants.T_IDXS[:CONTROL_N]
 | |
| ALLOW_THROTTLE_THRESHOLD = 0.4
 | |
| MIN_ALLOW_THROTTLE_SPEED = 2.5
 | |
| 
 | |
| # Lookup table for turns
 | |
| _A_TOTAL_MAX_V = [1.7, 3.2]
 | |
| _A_TOTAL_MAX_BP = [20., 40.]
 | |
| 
 | |
| 
 | |
| def get_max_accel(v_ego):
 | |
|   return np.interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS)
 | |
| 
 | |
| def get_coast_accel(pitch):
 | |
|   return np.sin(pitch) * -5.65 - 0.3  # fitted from data using xx/projects/allow_throttle/compute_coast_accel.py
 | |
| 
 | |
| 
 | |
| def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
 | |
|   """
 | |
|   This function returns a limited long acceleration allowed, depending on the existing lateral acceleration
 | |
|   this should avoid accelerating when losing the target in turns
 | |
|   """
 | |
|   # FIXME: This function to calculate lateral accel is incorrect and should use the VehicleModel
 | |
|   # The lookup table for turns should also be updated if we do this
 | |
|   a_total_max = np.interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
 | |
|   a_y = v_ego ** 2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase)
 | |
|   a_x_allowed = math.sqrt(max(a_total_max ** 2 - a_y ** 2, 0.))
 | |
| 
 | |
|   return [a_target[0], min(a_target[1], a_x_allowed)]
 | |
| 
 | |
| 
 | |
| class LongitudinalPlanner:
 | |
|   def __init__(self, CP, init_v=0.0, init_a=0.0, dt=DT_MDL):
 | |
|     self.CP = CP
 | |
|     self.mpc = LongitudinalMpc(dt=dt)
 | |
|     # TODO remove mpc modes when TR released
 | |
|     self.mpc.mode = 'acc'
 | |
|     self.fcw = False
 | |
|     self.dt = dt
 | |
|     self.allow_throttle = True
 | |
| 
 | |
|     self.a_desired = init_a
 | |
|     self.v_desired_filter = FirstOrderFilter(init_v, 2.0, self.dt)
 | |
|     self.prev_accel_clip = [ACCEL_MIN, ACCEL_MAX]
 | |
|     self.output_a_target = 0.0
 | |
|     self.output_should_stop = False
 | |
| 
 | |
|     self.v_desired_trajectory = np.zeros(CONTROL_N)
 | |
|     self.a_desired_trajectory = np.zeros(CONTROL_N)
 | |
|     self.j_desired_trajectory = np.zeros(CONTROL_N)
 | |
|     self.solverExecutionTime = 0.0
 | |
| 
 | |
|   @staticmethod
 | |
|   def parse_model(model_msg):
 | |
|     if (len(model_msg.position.x) == ModelConstants.IDX_N and
 | |
|       len(model_msg.velocity.x) == ModelConstants.IDX_N and
 | |
|       len(model_msg.acceleration.x) == ModelConstants.IDX_N):
 | |
|       x = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.position.x)
 | |
|       v = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.velocity.x)
 | |
|       a = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.acceleration.x)
 | |
|       j = np.zeros(len(T_IDXS_MPC))
 | |
|     else:
 | |
|       x = np.zeros(len(T_IDXS_MPC))
 | |
|       v = np.zeros(len(T_IDXS_MPC))
 | |
|       a = np.zeros(len(T_IDXS_MPC))
 | |
|       j = np.zeros(len(T_IDXS_MPC))
 | |
|     if len(model_msg.meta.disengagePredictions.gasPressProbs) > 1:
 | |
|       throttle_prob = model_msg.meta.disengagePredictions.gasPressProbs[1]
 | |
|     else:
 | |
|       throttle_prob = 1.0
 | |
|     return x, v, a, j, throttle_prob
 | |
| 
 | |
|   def update(self, sm):
 | |
|     mode = 'blended' if sm['selfdriveState'].experimentalMode else 'acc'
 | |
| 
 | |
|     if len(sm['carControl'].orientationNED) == 3:
 | |
|       accel_coast = get_coast_accel(sm['carControl'].orientationNED[1])
 | |
|     else:
 | |
|       accel_coast = ACCEL_MAX
 | |
| 
 | |
|     v_ego = sm['carState'].vEgo
 | |
|     v_cruise_kph = min(sm['carState'].vCruise, V_CRUISE_MAX)
 | |
|     v_cruise = v_cruise_kph * CV.KPH_TO_MS
 | |
|     v_cruise_initialized = sm['carState'].vCruise != V_CRUISE_UNSET
 | |
| 
 | |
|     long_control_off = sm['controlsState'].longControlState == LongCtrlState.off
 | |
|     force_slow_decel = sm['controlsState'].forceDecel
 | |
| 
 | |
|     # Reset current state when not engaged, or user is controlling the speed
 | |
|     reset_state = long_control_off if self.CP.openpilotLongitudinalControl else not sm['selfdriveState'].enabled
 | |
|     # PCM cruise speed may be updated a few cycles later, check if initialized
 | |
|     reset_state = reset_state or not v_cruise_initialized
 | |
| 
 | |
|     # No change cost when user is controlling the speed, or when standstill
 | |
|     prev_accel_constraint = not (reset_state or sm['carState'].standstill)
 | |
| 
 | |
|     if mode == 'acc':
 | |
|       accel_clip = [ACCEL_MIN, get_max_accel(v_ego)]
 | |
|       steer_angle_without_offset = sm['carState'].steeringAngleDeg - sm['liveParameters'].angleOffsetDeg
 | |
|       accel_clip = limit_accel_in_turns(v_ego, steer_angle_without_offset, accel_clip, self.CP)
 | |
|     else:
 | |
|       accel_clip = [ACCEL_MIN, ACCEL_MAX]
 | |
| 
 | |
|     if reset_state:
 | |
|       self.v_desired_filter.x = v_ego
 | |
|       # Clip aEgo to cruise limits to prevent large accelerations when becoming active
 | |
|       self.a_desired = np.clip(sm['carState'].aEgo, accel_clip[0], accel_clip[1])
 | |
| 
 | |
|     # Prevent divergence, smooth in current v_ego
 | |
|     self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego))
 | |
|     x, v, a, j, throttle_prob = self.parse_model(sm['modelV2'])
 | |
|     # Don't clip at low speeds since throttle_prob doesn't account for creep
 | |
|     self.allow_throttle = throttle_prob > ALLOW_THROTTLE_THRESHOLD or v_ego <= MIN_ALLOW_THROTTLE_SPEED
 | |
| 
 | |
|     if not self.allow_throttle:
 | |
|       clipped_accel_coast = max(accel_coast, accel_clip[0])
 | |
|       clipped_accel_coast_interp = np.interp(v_ego, [MIN_ALLOW_THROTTLE_SPEED, MIN_ALLOW_THROTTLE_SPEED*2], [accel_clip[1], clipped_accel_coast])
 | |
|       accel_clip[1] = min(accel_clip[1], clipped_accel_coast_interp)
 | |
| 
 | |
|     if force_slow_decel:
 | |
|       v_cruise = 0.0
 | |
| 
 | |
|     self.mpc.set_weights(prev_accel_constraint, personality=sm['selfdriveState'].personality)
 | |
|     self.mpc.set_cur_state(self.v_desired_filter.x, self.a_desired)
 | |
|     self.mpc.update(sm['radarState'], v_cruise, x, v, a, j, personality=sm['selfdriveState'].personality)
 | |
| 
 | |
|     self.v_desired_trajectory = np.interp(CONTROL_N_T_IDX, T_IDXS_MPC, self.mpc.v_solution)
 | |
|     self.a_desired_trajectory = np.interp(CONTROL_N_T_IDX, T_IDXS_MPC, self.mpc.a_solution)
 | |
|     self.j_desired_trajectory = np.interp(CONTROL_N_T_IDX, T_IDXS_MPC[:-1], self.mpc.j_solution)
 | |
| 
 | |
|     # TODO counter is only needed because radar is glitchy, remove once radar is gone
 | |
|     self.fcw = self.mpc.crash_cnt > 2 and not sm['carState'].standstill
 | |
|     if self.fcw:
 | |
|       cloudlog.info("FCW triggered")
 | |
| 
 | |
|     # Interpolate 0.05 seconds and save as starting point for next iteration
 | |
|     a_prev = self.a_desired
 | |
|     self.a_desired = float(np.interp(self.dt, CONTROL_N_T_IDX, self.a_desired_trajectory))
 | |
|     self.v_desired_filter.x = self.v_desired_filter.x + self.dt * (self.a_desired + a_prev) / 2.0
 | |
| 
 | |
|     action_t =  self.CP.longitudinalActuatorDelay + DT_MDL
 | |
|     output_a_target_mpc, output_should_stop_mpc = get_accel_from_plan(self.v_desired_trajectory, self.a_desired_trajectory, CONTROL_N_T_IDX,
 | |
|                                                                         action_t=action_t, vEgoStopping=self.CP.vEgoStopping)
 | |
|     output_a_target_e2e = sm['modelV2'].action.desiredAcceleration
 | |
|     output_should_stop_e2e = sm['modelV2'].action.shouldStop
 | |
| 
 | |
|     if mode == 'acc':
 | |
|       output_a_target = output_a_target_mpc
 | |
|       self.output_should_stop = output_should_stop_mpc
 | |
|     else:
 | |
|       output_a_target = min(output_a_target_mpc, output_a_target_e2e)
 | |
|       self.output_should_stop = output_should_stop_e2e or output_should_stop_mpc
 | |
| 
 | |
|     for idx in range(2):
 | |
|       accel_clip[idx] = np.clip(accel_clip[idx], self.prev_accel_clip[idx] - 0.05, self.prev_accel_clip[idx] + 0.05)
 | |
|     self.output_a_target = np.clip(output_a_target, accel_clip[0], accel_clip[1])
 | |
|     self.prev_accel_clip = accel_clip
 | |
| 
 | |
|   def publish(self, sm, pm):
 | |
|     plan_send = messaging.new_message('longitudinalPlan')
 | |
| 
 | |
|     plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'selfdriveState', 'radarState'])
 | |
| 
 | |
|     longitudinalPlan = plan_send.longitudinalPlan
 | |
|     longitudinalPlan.modelMonoTime = sm.logMonoTime['modelV2']
 | |
|     longitudinalPlan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.logMonoTime['modelV2']
 | |
|     longitudinalPlan.solverExecutionTime = self.mpc.solve_time
 | |
| 
 | |
|     longitudinalPlan.speeds = self.v_desired_trajectory.tolist()
 | |
|     longitudinalPlan.accels = self.a_desired_trajectory.tolist()
 | |
|     longitudinalPlan.jerks = self.j_desired_trajectory.tolist()
 | |
| 
 | |
|     longitudinalPlan.hasLead = sm['radarState'].leadOne.status
 | |
|     longitudinalPlan.longitudinalPlanSource = self.mpc.source
 | |
|     longitudinalPlan.fcw = self.fcw
 | |
| 
 | |
|     longitudinalPlan.aTarget = float(self.output_a_target)
 | |
|     longitudinalPlan.shouldStop = bool(self.output_should_stop)
 | |
|     longitudinalPlan.allowBrake = True
 | |
|     longitudinalPlan.allowThrottle = bool(self.allow_throttle)
 | |
| 
 | |
|     pm.send('longitudinalPlan', plan_send)
 | |
| 
 |