openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

496 lines
19 KiB

/*
* This file is part of ACADO Toolkit.
*
* ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
* Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
* Milan Vukov, Rien Quirynen, KU Leuven.
* Developed within the Optimization in Engineering Center (OPTEC)
* under supervision of Moritz Diehl. All rights reserved.
*
* ACADO Toolkit is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* ACADO Toolkit is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with ACADO Toolkit; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/**
* \file include/acado/objective/objective.hpp
* \author Boris Houska, Hans Joachim Ferreau, Milan Vukov
*
*/
#ifndef ACADO_TOOLKIT_OBJECTIVE_HPP
#define ACADO_TOOLKIT_OBJECTIVE_HPP
#include <acado/objective/lagrange_term.hpp>
#include <acado/objective/lsq_term.hpp>
#include <acado/objective/lsq_end_term.hpp>
#include <acado/objective/mayer_term.hpp>
#include <acado/constraint/constraint.hpp>
BEGIN_NAMESPACE_ACADO
/** An LSQ element data type used for code generation. */
struct LsqData
{
LsqData(const DMatrix& _WW, const Function& _hh, bool _givenW = true)
: W( _WW ), h( _hh ), givenW( _givenW )
{}
/** A weighting matrix. If \a givenW is true, then this guy is used
* as a sparsity pattern, only. */
DMatrix W;
/** An LSQ underlying function. */
Function h;
/** Indicator, \sa W */
bool givenW;
};
/** A vector of LSQ data elements. */
typedef std::vector< LsqData > LsqElements;
/** An extern LSQ element data type, i.e. the function is defined externally. */
struct LsqExternData
{
LsqExternData(const DMatrix& _WW, const std::string& _hh, bool _givenW = true)
: W( _WW ), h( _hh ), givenW( _givenW )
{}
/** A weighting matrix. If \a givenW is true, then this guy is used
* as a sparsity pattern, only. */
DMatrix W;
/** An LSQ underlying function. */
std::string h;
/** Indicator, \sa W */
bool givenW;
};
/** A vector of externally defined LSQ data elements. */
typedef std::vector< LsqExternData > LsqExternElements;
/** An LSQ element data type used for code generation. */
struct LsqLinearData
{
LsqLinearData(const DVector& _Wlx, const DVector& _Wlu, bool _givenW = true)
: Wlx( _Wlx ), Wlu( _Wlu ), givenW( _givenW )
{}
/** Weighting vectors. If \a givenW is true, then this guy is used
* as a sparsity pattern, only. */
DMatrix Wlx, Wlu;
/** Indicator. */
bool givenW;
};
/** A vector of LSQ data linear elements. */
typedef std::vector< LsqLinearData > LsqLinearElements;
/**
* \brief Stores and evaluates the objective function of optimal control problems.
*
* \ingroup BasicDataStructures
*
* The class Objective is class is designed to formulate
* objecive functionals that can be part of an optimal
* control problem (OCP).
* Mainly, an objective can have additive terms with
* different structures that can be added by using
* various routines that are implemented in this class
*
* Note that a this class is derived from the class
* LagrangeTerm while it has Mayer and LSQ-Terms as
* a member. The reason for this assymmetry is that a
* Lagrange - term will be reformulated as a Mayer term as
* soon as the function init( ... ) is called. (I.e. the
* class LagrangeTerm is only used a kind of temporary
* memory to store Expressions that are added by the
* user.)
*
* \author Boris Houska, Hans Joachim Ferreau, Milan Vukov
*/
class Objective : public LagrangeTerm
{
//
// PUBLIC MEMBER FUNCTIONS:
//
public:
/** Default constructor. */
Objective( );
/** Default constructor. */
Objective( const Grid &grid_ );
/** Copy constructor (deep copy). */
Objective( const Objective& rhs );
/** Destructor. */
virtual ~Objective( );
/** Assignment operator (deep copy). */
Objective& operator=( const Objective& rhs );
/** Sets the discretization grid. \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
returnValue init( const Grid &grid_ );
// =======================================================================================
//
// LOADING ROUTINES
//
// =======================================================================================
/** Adds an expression for the Mayer term.
* \return SUCCESSFUL_RETURN
*/
inline returnValue addMayerTerm( const Expression& arg );
inline returnValue addMayerTerm( const Function& arg );
/** Adds an Least Square term of the general form \n
* \n
* 0.5* sum_i || h(t_i,x(t_i),u(t_i),p(t_i),...) - r_i ||^2_S_i \n
* \n
* Here, the matrices S_i and the reference vectors r_i should be given \n
* in MatrixVariablesGrid and VariablesGrid format respectively. If S_ is \n
* a NULL-pointer the matrices S_i will be unit matrices. If r_ is a \n
* a NULL-pointer the reference will be equal to zero by default. \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
returnValue addLSQ( const MatrixVariablesGrid *S_, /**< the weighting matrix */
const Function& h , /**< the LSQ function */
const VariablesGrid *r_ /**< the reference vectors */ );
/** Adds an Least Square term that is only evaluated at the end: \n
* \n
* 0.5* || m(T,x(T),p,...) - r ||^2_S \n
* \n
* where S is a weighting matrix, r a reference vector and T the time \n
* at the last objective grid point. \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
returnValue addLSQEndTerm( const DMatrix & S, /**< a weighting matrix */
const Function & m, /**< the LSQ-Function */
const DVector & r /**< the reference */ );
//
// Code generation related functions
//
returnValue addLSQ(const DMatrix& S, const Function& h);
returnValue addLSQEndTerm(const DMatrix& S, const Function& h);
returnValue addLSQ(const DMatrix& S, const std::string& h);
returnValue addLSQEndTerm(const DMatrix& S, const std::string& h);
returnValue addLSQ(const BMatrix& S, const Function& h);
returnValue addLSQEndTerm(const BMatrix& S, const Function& h);
returnValue addLSQ(const BMatrix& S, const std::string& h);
returnValue addLSQEndTerm(const BMatrix& S, const std::string& h);
returnValue addLSQLinearTerms(const DVector& Slx, const DVector& Slu);
returnValue addLSQLinearTerms(const BVector& Slx, const BVector& Slu);
// =======================================================================================
//
// INITIALIZATION ROUTINES
//
// =======================================================================================
/** Initializes the objective and reformulates Lagrange-Terms if \n
* there are any. The RHS function that is passed in the argument \n
* will be augmented by one component if there is a Lagrange term. If \n
* the RHS function is NULL but there is Lagrange term then the \n
* routine will allocate memory for fcn and add one component !! \n
* \n
* \param nStages the number of stages \n
* \param nTransitions the number of transitions \n
* \param fcn the right-hand side functions \n
* \param transitions the transition functions \n
* \param constraint_ the constraint (to be reformulated) \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
returnValue init( const int nStages ,
const int nTransitions,
DifferentialEquation **fcn ,
Transition *transitions ,
Constraint *constraint_ );
// =======================================================================================
//
// DEFINITION OF SEEDS:
//
// =======================================================================================
/** Define a forward seed in form of a block matrix. \n
* \n
* \return SUCCESFUL RETURN \n
* RET_INPUT_OUT_OF_RANGE \n
*/
virtual returnValue setForwardSeed( BlockMatrix *xSeed_ , /**< the seed in x -direction */
BlockMatrix *xaSeed_, /**< the seed in xa-direction */
BlockMatrix *pSeed_ , /**< the seed in p -direction */
BlockMatrix *uSeed_ , /**< the seed in u -direction */
BlockMatrix *wSeed_ , /**< the seed in w -direction */
int order /**< the order of the seed. */ );
/** Define a backward seed in form of a block matrix. \n
* \n
* \return SUCCESFUL_RETURN \n
* RET_INPUT_OUT_OF_RANGE \n
*/
virtual returnValue setBackwardSeed( BlockMatrix *seed, /**< the seed matrix */
int order /**< the order of the seed.*/ );
/** Defines the first order backward seed to be \n
* a unit matrix. \n
* \n
* \return SUCCESFUL_RETURN \n
* RET_INPUT_OUT_OF_RANGE \n
*/
virtual returnValue setUnitBackwardSeed( );
// =======================================================================================
//
// EVALUATION ROUTINES
//
// =======================================================================================
/** Evaluates the objective with all its terms. \n
* \n
* \return SUCCESSFUL_RETURN if the evaluation was successful. \n
* of an error message if unsuccessful. \n
*/
returnValue evaluate( const OCPiterate &x );
/** Evaluates the objective gradient. (please use evaluate to specify \n
* the evaluation point) \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
returnValue evaluateSensitivities();
/** Evaluates the objective gradient and the associated Hessian. \n
* (please use evaluate to specify the evaluation point) \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
returnValue evaluateSensitivities( BlockMatrix &hessian );
/** Evaluates the objective gradient. (please use evaluate to specify \n
* the evaluation point) \n
* in addition a Gauss-Newton hessian approximation is provided \n
* \n
* \return SUCCESSFUL_RETURN \n
* RET_GAUSS_NEWTON_APPROXIMATION_NOT_SUPPORTED \n
*/
returnValue evaluateSensitivitiesGN( BlockMatrix &hessian );
// =======================================================================================
//
// RESULTS OF THE EVALUATION
//
// =======================================================================================
/** Returns the result for the residuum of the bounds. \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
virtual returnValue getObjectiveValue( double &objectiveValue );
/** Returns the result for the forward sensitivities in BlockMatrix form. \n
* \n
* \return SUCCESSFUL_RETURN \n
* RET_INPUT_OUT_OF_RANGE \n
*/
virtual returnValue getForwardSensitivities( BlockMatrix &D /**< the result for the
* forward sensitivi-
* ties */,
int order /**< the order */ );
/** Returns the result for the backward sensitivities in BlockMatrix form. \n
* \n
* \return SUCCESSFUL_RETURN \n
* RET_INPUT_OUT_OF_RANGE \n
*/
virtual returnValue getBackwardSensitivities( BlockMatrix &D /**< the result for the
* forward sensitivi-
* ties */,
int order /**< the order */ );
// =======================================================================================
//
// DIMENSIONS
//
// =======================================================================================
/** Returns the number of differential states \n
* \return The requested number of differential states. \n
*/
inline int getNX () const;
/** Returns the number of algebraic states \n
* \return The requested number of algebraic states. \n
*/
inline int getNXA () const;
/** Returns the number of parameters \n
* \return The requested number of parameters. \n
*/
inline int getNP () const;
/** Returns the number of controls \n
* \return The requested number of controls. \n
*/
inline int getNU () const;
/** Returns the number of disturbances \n
* \return The requested number of disturbances. \n
*/
inline int getNW () const;
// =======================================================================================
/** Asks the objective whether all terms have Least-Square form. If the \n
* returned answer is "BT_TRUE", the computation of Gauss-Newton hessian \n
* approximation is supported. \n
* \n
* \return BT_TRUE if all objective terms have LSQ form. \n
*/
inline BooleanType hasLSQform();
/** returns whether the constraint element is affine. */
inline BooleanType isAffine();
/** returns whether the objective is quadratic. */
inline BooleanType isQuadratic();
/** returns whether the objective is convex. */
inline BooleanType isConvex();
/** overwrites the reference (only for LSQ tracking objectives) \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
inline returnValue setReference( const VariablesGrid &ref );
/** Returns whether or not the objective is empty. \n
* \n
* \return BT_TRUE if no objective is specified yet. \n
* BT_FALSE otherwise. \n
*/
BooleanType isEmpty() const;
/** \name Code generation related functions.
* @{ */
returnValue getLSQTerms( LsqElements& _elements ) const;
returnValue getLSQEndTerms( LsqElements& _elements ) const;
returnValue getLSQTerms( LsqExternElements& _elements ) const;
returnValue getLSQEndTerms( LsqExternElements& _elements ) const;
returnValue getLSQLinearTerms( LsqLinearElements& _elements ) const;
/** @} */
uint getNumMayerTerms( ) const;
uint getNumLagrangeTerms( ) const;
returnValue getMayerTerm( uint index, Function& mayerTerm ) const;
returnValue getLagrangeTerm( uint index, Function& lagrangeTerm ) const;
//
// DATA MEMBERS:
//
protected:
LSQTerm **lsqTerm ; /**< The Least Square Terms. */
LSQEndTerm **lsqEndTerm; /**< The Least Square End Terms. */
MayerTerm **mayerTerm ; /**< The Mayer Terms. */
uint nLSQ ; /**< number of LSQ terms */
uint nEndLSQ ; /**< number of end LSQ terms */
uint nMayer ; /**< number of Mayer terms */
LsqElements cgLsqElements;
LsqElements cgLsqEndTermElements;
LsqExternElements cgExternLsqElements;
LsqExternElements cgExternLsqEndTermElements;
LsqLinearElements cgLsqLinearElements;
};
CLOSE_NAMESPACE_ACADO
#include <acado/objective/objective.ipp>
#endif // ACADO_TOOLKIT_OBJECTIVE_HPP
/*
* end of file
*/