You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							253 lines
						
					
					
						
							10 KiB
						
					
					
				
			
		
		
	
	
							253 lines
						
					
					
						
							10 KiB
						
					
					
				#!/usr/bin/env python3
 | 
						|
import os
 | 
						|
import math
 | 
						|
import json
 | 
						|
import numpy as np
 | 
						|
 | 
						|
import cereal.messaging as messaging
 | 
						|
from cereal import car
 | 
						|
from cereal import log
 | 
						|
from common.params import Params, put_nonblocking
 | 
						|
from common.realtime import config_realtime_process, DT_MDL
 | 
						|
from common.numpy_fast import clip
 | 
						|
from selfdrive.locationd.models.car_kf import CarKalman, ObservationKind, States
 | 
						|
from selfdrive.locationd.models.constants import GENERATED_DIR
 | 
						|
from system.swaglog import cloudlog
 | 
						|
 | 
						|
 | 
						|
MAX_ANGLE_OFFSET_DELTA = 20 * DT_MDL  # Max 20 deg/s
 | 
						|
ROLL_MAX_DELTA = math.radians(20.0) * DT_MDL  # 20deg in 1 second is well within curvature limits
 | 
						|
ROLL_MIN, ROLL_MAX = math.radians(-10), math.radians(10)
 | 
						|
ROLL_LOWERED_MAX = math.radians(8)
 | 
						|
ROLL_STD_MAX = math.radians(1.5)
 | 
						|
LATERAL_ACC_SENSOR_THRESHOLD = 4.0
 | 
						|
OFFSET_MAX = 10.0
 | 
						|
OFFSET_LOWERED_MAX = 8.0
 | 
						|
 | 
						|
 | 
						|
class ParamsLearner:
 | 
						|
  def __init__(self, CP, steer_ratio, stiffness_factor, angle_offset, P_initial=None):
 | 
						|
    self.kf = CarKalman(GENERATED_DIR, steer_ratio, stiffness_factor, angle_offset, P_initial)
 | 
						|
 | 
						|
    self.kf.filter.set_global("mass", CP.mass)
 | 
						|
    self.kf.filter.set_global("rotational_inertia", CP.rotationalInertia)
 | 
						|
    self.kf.filter.set_global("center_to_front", CP.centerToFront)
 | 
						|
    self.kf.filter.set_global("center_to_rear", CP.wheelbase - CP.centerToFront)
 | 
						|
    self.kf.filter.set_global("stiffness_front", CP.tireStiffnessFront)
 | 
						|
    self.kf.filter.set_global("stiffness_rear", CP.tireStiffnessRear)
 | 
						|
 | 
						|
    self.active = False
 | 
						|
 | 
						|
    self.speed = 0.0
 | 
						|
    self.yaw_rate = 0.0
 | 
						|
    self.yaw_rate_std = 0.0
 | 
						|
    self.roll = 0.0
 | 
						|
    self.steering_angle = 0.0
 | 
						|
    self.roll_valid = False
 | 
						|
 | 
						|
  def handle_log(self, t, which, msg):
 | 
						|
    if which == 'liveLocationKalman':
 | 
						|
      self.yaw_rate = msg.angularVelocityCalibrated.value[2]
 | 
						|
      self.yaw_rate_std = msg.angularVelocityCalibrated.std[2]
 | 
						|
 | 
						|
      localizer_roll = msg.orientationNED.value[0]
 | 
						|
      localizer_roll_std = np.radians(1) if np.isnan(msg.orientationNED.std[0]) else msg.orientationNED.std[0]
 | 
						|
      self.roll_valid = (localizer_roll_std < ROLL_STD_MAX) and (ROLL_MIN < localizer_roll < ROLL_MAX) and msg.sensorsOK
 | 
						|
      if self.roll_valid:
 | 
						|
        roll = localizer_roll
 | 
						|
        # Experimentally found multiplier of 2 to be best trade-off between stability and accuracy or similar?
 | 
						|
        roll_std = 2 * localizer_roll_std
 | 
						|
      else:
 | 
						|
        # This is done to bound the road roll estimate when localizer values are invalid
 | 
						|
        roll = 0.0
 | 
						|
        roll_std = np.radians(10.0)
 | 
						|
      self.roll = clip(roll, self.roll - ROLL_MAX_DELTA, self.roll + ROLL_MAX_DELTA)
 | 
						|
 | 
						|
      yaw_rate_valid = msg.angularVelocityCalibrated.valid
 | 
						|
      yaw_rate_valid = yaw_rate_valid and 0 < self.yaw_rate_std < 10  # rad/s
 | 
						|
      yaw_rate_valid = yaw_rate_valid and abs(self.yaw_rate) < 1  # rad/s
 | 
						|
 | 
						|
      if self.active:
 | 
						|
        if msg.posenetOK:
 | 
						|
 | 
						|
          if yaw_rate_valid:
 | 
						|
            self.kf.predict_and_observe(t,
 | 
						|
                                        ObservationKind.ROAD_FRAME_YAW_RATE,
 | 
						|
                                        np.array([[-self.yaw_rate]]),
 | 
						|
                                        np.array([np.atleast_2d(self.yaw_rate_std**2)]))
 | 
						|
 | 
						|
          self.kf.predict_and_observe(t,
 | 
						|
                                      ObservationKind.ROAD_ROLL,
 | 
						|
                                      np.array([[self.roll]]),
 | 
						|
                                      np.array([np.atleast_2d(roll_std**2)]))
 | 
						|
        self.kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, np.array([[0]]))
 | 
						|
 | 
						|
        # We observe the current stiffness and steer ratio (with a high observation noise) to bound
 | 
						|
        # the respective estimate STD. Otherwise the STDs keep increasing, causing rapid changes in the
 | 
						|
        # states in longer routes (especially straight stretches).
 | 
						|
        stiffness = float(self.kf.x[States.STIFFNESS])
 | 
						|
        steer_ratio = float(self.kf.x[States.STEER_RATIO])
 | 
						|
        self.kf.predict_and_observe(t, ObservationKind.STIFFNESS, np.array([[stiffness]]))
 | 
						|
        self.kf.predict_and_observe(t, ObservationKind.STEER_RATIO, np.array([[steer_ratio]]))
 | 
						|
 | 
						|
    elif which == 'carState':
 | 
						|
      self.steering_angle = msg.steeringAngleDeg
 | 
						|
      self.speed = msg.vEgo
 | 
						|
 | 
						|
      in_linear_region = abs(self.steering_angle) < 45
 | 
						|
      self.active = self.speed > 1 and in_linear_region
 | 
						|
 | 
						|
      if self.active:
 | 
						|
        self.kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, np.array([[math.radians(msg.steeringAngleDeg)]]))
 | 
						|
        self.kf.predict_and_observe(t, ObservationKind.ROAD_FRAME_X_SPEED, np.array([[self.speed]]))
 | 
						|
 | 
						|
    if not self.active:
 | 
						|
      # Reset time when stopped so uncertainty doesn't grow
 | 
						|
      self.kf.filter.set_filter_time(t)
 | 
						|
      self.kf.filter.reset_rewind()
 | 
						|
 | 
						|
 | 
						|
def check_valid_with_hysteresis(current_valid: bool, val: float, threshold: float, lowered_threshold: float):
 | 
						|
  if current_valid:
 | 
						|
    current_valid = abs(val) < threshold
 | 
						|
  else:
 | 
						|
    current_valid = abs(val) < lowered_threshold
 | 
						|
  return current_valid
 | 
						|
 | 
						|
 | 
						|
def main(sm=None, pm=None):
 | 
						|
  config_realtime_process([0, 1, 2, 3], 5)
 | 
						|
 | 
						|
  DEBUG = bool(int(os.getenv("DEBUG", "0")))
 | 
						|
  REPLAY = bool(int(os.getenv("REPLAY", "0")))
 | 
						|
 | 
						|
  if sm is None:
 | 
						|
    sm = messaging.SubMaster(['liveLocationKalman', 'carState'], poll=['liveLocationKalman'])
 | 
						|
  if pm is None:
 | 
						|
    pm = messaging.PubMaster(['liveParameters'])
 | 
						|
 | 
						|
  params_reader = Params()
 | 
						|
  # wait for stats about the car to come in from controls
 | 
						|
  cloudlog.info("paramsd is waiting for CarParams")
 | 
						|
  CP = car.CarParams.from_bytes(params_reader.get("CarParams", block=True))
 | 
						|
  cloudlog.info("paramsd got CarParams")
 | 
						|
 | 
						|
  min_sr, max_sr = 0.5 * CP.steerRatio, 2.0 * CP.steerRatio
 | 
						|
 | 
						|
  params = params_reader.get("LiveParameters")
 | 
						|
 | 
						|
  # Check if car model matches
 | 
						|
  if params is not None:
 | 
						|
    params = json.loads(params)
 | 
						|
    if params.get('carFingerprint', None) != CP.carFingerprint:
 | 
						|
      cloudlog.info("Parameter learner found parameters for wrong car.")
 | 
						|
      params = None
 | 
						|
 | 
						|
  # Check if starting values are sane
 | 
						|
  if params is not None:
 | 
						|
    try:
 | 
						|
      steer_ratio_sane = min_sr <= params['steerRatio'] <= max_sr
 | 
						|
      if not steer_ratio_sane:
 | 
						|
        cloudlog.info(f"Invalid starting values found {params}")
 | 
						|
        params = None
 | 
						|
    except Exception as e:
 | 
						|
      cloudlog.info(f"Error reading params {params}: {str(e)}")
 | 
						|
      params = None
 | 
						|
 | 
						|
  # TODO: cache the params with the capnp struct
 | 
						|
  if params is None:
 | 
						|
    params = {
 | 
						|
      'carFingerprint': CP.carFingerprint,
 | 
						|
      'steerRatio': CP.steerRatio,
 | 
						|
      'stiffnessFactor': 1.0,
 | 
						|
      'angleOffsetAverageDeg': 0.0,
 | 
						|
    }
 | 
						|
    cloudlog.info("Parameter learner resetting to default values")
 | 
						|
 | 
						|
  if not REPLAY:
 | 
						|
    # When driving in wet conditions the stiffness can go down, and then be too low on the next drive
 | 
						|
    # Without a way to detect this we have to reset the stiffness every drive
 | 
						|
    params['stiffnessFactor'] = 1.0
 | 
						|
 | 
						|
  pInitial = None
 | 
						|
  if DEBUG:
 | 
						|
    pInitial = np.array(params['filterState']['std']) if 'filterState' in params else None
 | 
						|
 | 
						|
  learner = ParamsLearner(CP, params['steerRatio'], params['stiffnessFactor'], math.radians(params['angleOffsetAverageDeg']), pInitial)
 | 
						|
  angle_offset_average = params['angleOffsetAverageDeg']
 | 
						|
  angle_offset = angle_offset_average
 | 
						|
  roll = 0.0
 | 
						|
  avg_offset_valid = True
 | 
						|
  total_offset_valid = True
 | 
						|
  roll_valid = True
 | 
						|
 | 
						|
  while True:
 | 
						|
    sm.update()
 | 
						|
    if sm.all_checks():
 | 
						|
      for which in sorted(sm.updated.keys(), key=lambda x: sm.logMonoTime[x]):
 | 
						|
        if sm.updated[which]:
 | 
						|
          t = sm.logMonoTime[which] * 1e-9
 | 
						|
          learner.handle_log(t, which, sm[which])
 | 
						|
 | 
						|
    if sm.updated['liveLocationKalman']:
 | 
						|
      x = learner.kf.x
 | 
						|
      P = np.sqrt(learner.kf.P.diagonal())
 | 
						|
      if not all(map(math.isfinite, x)):
 | 
						|
        cloudlog.error("NaN in liveParameters estimate. Resetting to default values")
 | 
						|
        learner = ParamsLearner(CP, CP.steerRatio, 1.0, 0.0)
 | 
						|
        x = learner.kf.x
 | 
						|
 | 
						|
      angle_offset_average = clip(math.degrees(x[States.ANGLE_OFFSET]), angle_offset_average - MAX_ANGLE_OFFSET_DELTA, angle_offset_average + MAX_ANGLE_OFFSET_DELTA)
 | 
						|
      angle_offset = clip(math.degrees(x[States.ANGLE_OFFSET] + x[States.ANGLE_OFFSET_FAST]), angle_offset - MAX_ANGLE_OFFSET_DELTA, angle_offset + MAX_ANGLE_OFFSET_DELTA)
 | 
						|
      roll = clip(float(x[States.ROAD_ROLL]), roll - ROLL_MAX_DELTA, roll + ROLL_MAX_DELTA)
 | 
						|
      roll_std = float(P[States.ROAD_ROLL])
 | 
						|
      # Account for the opposite signs of the yaw rates
 | 
						|
      sensors_valid = bool(abs(learner.speed * (x[States.YAW_RATE] + learner.yaw_rate)) < LATERAL_ACC_SENSOR_THRESHOLD)
 | 
						|
      avg_offset_valid = check_valid_with_hysteresis(avg_offset_valid, angle_offset_average, OFFSET_MAX, OFFSET_LOWERED_MAX)
 | 
						|
      total_offset_valid = check_valid_with_hysteresis(total_offset_valid, angle_offset, OFFSET_MAX, OFFSET_LOWERED_MAX)
 | 
						|
      roll_valid = check_valid_with_hysteresis(roll_valid, roll, ROLL_MAX, ROLL_LOWERED_MAX)
 | 
						|
 | 
						|
      msg = messaging.new_message('liveParameters')
 | 
						|
 | 
						|
      liveParameters = msg.liveParameters
 | 
						|
      liveParameters.posenetValid = True
 | 
						|
      liveParameters.sensorValid = sensors_valid
 | 
						|
      liveParameters.steerRatio = float(x[States.STEER_RATIO])
 | 
						|
      liveParameters.stiffnessFactor = float(x[States.STIFFNESS])
 | 
						|
      liveParameters.roll = roll
 | 
						|
      liveParameters.angleOffsetAverageDeg = angle_offset_average
 | 
						|
      liveParameters.angleOffsetDeg = angle_offset
 | 
						|
      liveParameters.valid = all((
 | 
						|
        avg_offset_valid,
 | 
						|
        total_offset_valid,
 | 
						|
        roll_valid,
 | 
						|
        roll_std < ROLL_STD_MAX,
 | 
						|
        0.2 <= liveParameters.stiffnessFactor <= 5.0,
 | 
						|
        min_sr <= liveParameters.steerRatio <= max_sr,
 | 
						|
      ))
 | 
						|
      liveParameters.steerRatioStd = float(P[States.STEER_RATIO])
 | 
						|
      liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS])
 | 
						|
      liveParameters.angleOffsetAverageStd = float(P[States.ANGLE_OFFSET])
 | 
						|
      liveParameters.angleOffsetFastStd = float(P[States.ANGLE_OFFSET_FAST])
 | 
						|
      if DEBUG:
 | 
						|
        liveParameters.filterState = log.LiveLocationKalman.Measurement.new_message()
 | 
						|
        liveParameters.filterState.value = x.tolist()
 | 
						|
        liveParameters.filterState.std = P.tolist()
 | 
						|
        liveParameters.filterState.valid = True
 | 
						|
 | 
						|
      msg.valid = sm.all_checks()
 | 
						|
 | 
						|
      if sm.frame % 1200 == 0:  # once a minute
 | 
						|
        params = {
 | 
						|
          'carFingerprint': CP.carFingerprint,
 | 
						|
          'steerRatio': liveParameters.steerRatio,
 | 
						|
          'stiffnessFactor': liveParameters.stiffnessFactor,
 | 
						|
          'angleOffsetAverageDeg': liveParameters.angleOffsetAverageDeg,
 | 
						|
        }
 | 
						|
        put_nonblocking("LiveParameters", json.dumps(params))
 | 
						|
 | 
						|
      pm.send('liveParameters', msg)
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
  main()
 | 
						|
 |