You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							103 lines
						
					
					
						
							3.3 KiB
						
					
					
				
			
		
		
	
	
							103 lines
						
					
					
						
							3.3 KiB
						
					
					
				#!/usr/bin/env python
 | 
						|
import numpy as np
 | 
						|
from numpy.linalg import inv
 | 
						|
 | 
						|
# dynamic bycicle model from "The Science of Vehicle Dynamics (2014), M. Guiggiani"##
 | 
						|
# Xdot = A*X + B*U
 | 
						|
# where X = [v, r], with v and r lateral speed and rotational speed, respectively
 | 
						|
# and U is the steering angle (controller input)
 | 
						|
#
 | 
						|
# A depends on longitudinal speed, u, and vehicle parameters CP
 | 
						|
 | 
						|
 | 
						|
def create_dyn_state_matrices(u, VM):
 | 
						|
  A = np.zeros((2, 2))
 | 
						|
  B = np.zeros((2, 1))
 | 
						|
  A[0, 0] = - (VM.cF + VM.cR) / (VM.m * u)
 | 
						|
  A[0, 1] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.m * u) - u
 | 
						|
  A[1, 0] = - (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.j * u)
 | 
						|
  A[1, 1] = - (VM.cF * VM.aF**2 + VM.cR * VM.aR**2) / (VM.j * u)
 | 
						|
  B[0, 0] = (VM.cF + VM.chi * VM.cR) / VM.m / VM.sR
 | 
						|
  B[1, 0] = (VM.cF * VM.aF - VM.chi * VM.cR * VM.aR) / VM.j / VM.sR
 | 
						|
  return A, B
 | 
						|
 | 
						|
 | 
						|
def kin_ss_sol(sa, u, VM):
 | 
						|
  # kinematic solution, useful when speed ~ 0
 | 
						|
  K = np.zeros((2, 1))
 | 
						|
  K[0, 0] = VM.aR / VM.sR / VM.l * u
 | 
						|
  K[1, 0] = 1. / VM.sR / VM.l * u
 | 
						|
  return K * sa
 | 
						|
 | 
						|
 | 
						|
def dyn_ss_sol(sa, u, VM):
 | 
						|
  # Dynamic solution, useful when speed > 0
 | 
						|
  A, B = create_dyn_state_matrices(u, VM)
 | 
						|
  return - np.matmul(inv(A), B) * sa
 | 
						|
 | 
						|
 | 
						|
def calc_slip_factor(VM):
 | 
						|
  # the slip factor is a measure of how the curvature changes with speed
 | 
						|
  # it's positive for Oversteering vehicle, negative (usual case) otherwise
 | 
						|
  return VM.m * (VM.cF * VM.aF - VM.cR * VM.aR) / (VM.l**2 * VM.cF * VM.cR)
 | 
						|
 | 
						|
 | 
						|
class VehicleModel(object):
 | 
						|
  def __init__(self, CP, init_state=np.asarray([[0.], [0.]])):
 | 
						|
    self.dt = 0.1
 | 
						|
    lookahead = 2.    # s
 | 
						|
    self.steps = int(lookahead / self.dt)
 | 
						|
    self.update_state(init_state)
 | 
						|
    self.state_pred = np.zeros((self.steps, self.state.shape[0]))
 | 
						|
    self.CP = CP
 | 
						|
    # for math readability, convert long names car params into short names
 | 
						|
    self.m = CP.mass
 | 
						|
    self.j = CP.rotationalInertia
 | 
						|
    self.l = CP.wheelbase
 | 
						|
    self.aF = CP.centerToFront
 | 
						|
    self.aR = CP.wheelbase - CP.centerToFront
 | 
						|
    self.cF = CP.tireStiffnessFront
 | 
						|
    self.cR = CP.tireStiffnessRear
 | 
						|
    self.sR = CP.steerRatio
 | 
						|
    self.chi = CP.steerRatioRear
 | 
						|
 | 
						|
  def update_state(self, state):
 | 
						|
    self.state = state
 | 
						|
 | 
						|
  def steady_state_sol(self, sa, u):
 | 
						|
    # if the speed is too small we can't use the dynamic model
 | 
						|
    # (tire slip is undefined), we then use the kinematic model
 | 
						|
    if u > 0.1:
 | 
						|
      return dyn_ss_sol(sa, u, self)
 | 
						|
    else:
 | 
						|
      return kin_ss_sol(sa, u, self)
 | 
						|
 | 
						|
  def calc_curvature(self, sa, u):
 | 
						|
    # this formula can be derived from state equations in steady state conditions
 | 
						|
    return self.curvature_factor(u) * sa / self.sR
 | 
						|
 | 
						|
  def curvature_factor(self, u):
 | 
						|
    sf = calc_slip_factor(self)
 | 
						|
    return (1. - self.chi)/(1. - sf * u**2) / self.l
 | 
						|
 | 
						|
  def get_steer_from_curvature(self, curv, u):
 | 
						|
    return curv * self.sR * 1.0 / self.curvature_factor(u)
 | 
						|
 | 
						|
  def state_prediction(self, sa, u):
 | 
						|
    # U is the matrix of the controls
 | 
						|
    # u is the long speed
 | 
						|
    A, B = create_dyn_state_matrices(u, self)
 | 
						|
    return np.matmul((A * self.dt + np.identity(2)), self.state) + B * sa * self.dt
 | 
						|
 | 
						|
  def yaw_rate(self, sa, u):
 | 
						|
    return self.calc_curvature(sa, u) * u
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
  from selfdrive.car.honda.interface import CarInterface
 | 
						|
  # load car params
 | 
						|
  #CP = CarInterface.get_params("TOYOTA PRIUS 2017", {})
 | 
						|
  CP = CarInterface.get_params("HONDA CIVIC 2016 TOURING", {})
 | 
						|
  print CP
 | 
						|
  VM = VehicleModel(CP)
 | 
						|
  print VM.steady_state_sol(.1, 0.15)
 | 
						|
  print calc_slip_factor(VM)
 | 
						|
 |