You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
259 lines
10 KiB
259 lines
10 KiB
#include <map>
|
|
#include <string>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include "thneed.h"
|
|
|
|
extern map<cl_program, string> g_program_source;
|
|
|
|
static int is_same_size_image(cl_mem a, cl_mem b) {
|
|
size_t a_width, a_height, a_depth, a_array_size, a_row_pitch, a_slice_pitch;
|
|
clGetImageInfo(a, CL_IMAGE_WIDTH, sizeof(a_width), &a_width, NULL);
|
|
clGetImageInfo(a, CL_IMAGE_HEIGHT, sizeof(a_height), &a_height, NULL);
|
|
clGetImageInfo(a, CL_IMAGE_DEPTH, sizeof(a_depth), &a_depth, NULL);
|
|
clGetImageInfo(a, CL_IMAGE_ARRAY_SIZE, sizeof(a_array_size), &a_array_size, NULL);
|
|
clGetImageInfo(a, CL_IMAGE_ROW_PITCH, sizeof(a_row_pitch), &a_row_pitch, NULL);
|
|
clGetImageInfo(a, CL_IMAGE_SLICE_PITCH, sizeof(a_slice_pitch), &a_slice_pitch, NULL);
|
|
|
|
size_t b_width, b_height, b_depth, b_array_size, b_row_pitch, b_slice_pitch;
|
|
clGetImageInfo(b, CL_IMAGE_WIDTH, sizeof(b_width), &b_width, NULL);
|
|
clGetImageInfo(b, CL_IMAGE_HEIGHT, sizeof(b_height), &b_height, NULL);
|
|
clGetImageInfo(b, CL_IMAGE_DEPTH, sizeof(b_depth), &b_depth, NULL);
|
|
clGetImageInfo(b, CL_IMAGE_ARRAY_SIZE, sizeof(b_array_size), &b_array_size, NULL);
|
|
clGetImageInfo(b, CL_IMAGE_ROW_PITCH, sizeof(b_row_pitch), &b_row_pitch, NULL);
|
|
clGetImageInfo(b, CL_IMAGE_SLICE_PITCH, sizeof(b_slice_pitch), &b_slice_pitch, NULL);
|
|
|
|
return (a_width == b_width) && (a_height == b_height) &&
|
|
(a_depth == b_depth) && (a_array_size == b_array_size) &&
|
|
(a_row_pitch == b_row_pitch) && (a_slice_pitch == b_slice_pitch);
|
|
}
|
|
|
|
static cl_mem make_image_like(cl_context context, cl_mem val) {
|
|
cl_image_format format;
|
|
size_t width, height, row_pitch;
|
|
clGetImageInfo(val, CL_IMAGE_FORMAT, sizeof(format), &format, NULL);
|
|
assert(format.image_channel_order == CL_RGBA);
|
|
assert(format.image_channel_data_type == CL_HALF_FLOAT);
|
|
clGetImageInfo(val, CL_IMAGE_WIDTH, sizeof(width), &width, NULL);
|
|
clGetImageInfo(val, CL_IMAGE_HEIGHT, sizeof(height), &height, NULL);
|
|
clGetImageInfo(val, CL_IMAGE_ROW_PITCH, sizeof(row_pitch), &row_pitch, NULL);
|
|
|
|
cl_image_desc desc = {0};
|
|
desc.image_type = CL_MEM_OBJECT_IMAGE2D;
|
|
desc.image_width = width;
|
|
desc.image_height = height;
|
|
desc.image_row_pitch = row_pitch;
|
|
|
|
cl_mem buf = clCreateBuffer(context, CL_MEM_READ_WRITE, row_pitch*height, NULL, NULL);
|
|
assert(buf != NULL);
|
|
desc.buffer = buf;
|
|
|
|
cl_int err;
|
|
cl_mem tmp = clCreateImage(context, CL_MEM_READ_WRITE, &format, &desc, NULL, &err);
|
|
//printf("got %d for image %zux%zu %zu\n", err, width, height, row_pitch);
|
|
assert(tmp != NULL);
|
|
|
|
return tmp;
|
|
}
|
|
|
|
// convolution_horizontal_reduced_reads_1x1 is 66% of the model runtime
|
|
// make that faster and the model gets faster
|
|
|
|
// this cuts ~2 ms off the model runtime right now
|
|
int Thneed::optimize() {
|
|
const char *kernel_path = getenv("KERNEL_PATH");
|
|
if (!kernel_path) { kernel_path = "/data/openpilot/selfdrive/modeld/thneed/kernels"; printf("no KERNEL_PATH set, defaulting to %s\n", kernel_path); }
|
|
// load custom kernels
|
|
map<string, cl_program> g_programs;
|
|
for (auto &k : kq) {
|
|
// replace program?
|
|
if (g_programs.find(k->name) == g_programs.end()) {
|
|
char fn[0x100];
|
|
snprintf(fn, sizeof(fn), "%s/%s.cl", kernel_path, k->name.c_str());
|
|
FILE *g = fopen(fn, "rb");
|
|
if (g != NULL) {
|
|
char *src[0x10000];
|
|
const char *srcs[1]; srcs[0] = (const char *)src;
|
|
memset(src, 0, sizeof(src));
|
|
size_t length = fread(src, 1, sizeof(src), g);
|
|
fclose(g);
|
|
|
|
printf("building kernel %s\n", k->name.c_str());
|
|
k->program = clCreateProgramWithSource(context, 1, srcs, &length, NULL);
|
|
int err = clBuildProgram(k->program, 1, &device_id, "", NULL, NULL);
|
|
|
|
if (err != 0) {
|
|
printf("got err %d\n", err);
|
|
size_t err_length;
|
|
char buffer[2048];
|
|
clGetProgramBuildInfo(k->program, device_id, CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &err_length);
|
|
buffer[err_length] = '\0';
|
|
printf("%s\n", buffer);
|
|
}
|
|
assert(err == 0);
|
|
|
|
// save in cache
|
|
g_programs[k->name] = k->program;
|
|
g_program_source[k->program] = string((char *)src, length);
|
|
} else {
|
|
g_programs[k->name] = NULL;
|
|
}
|
|
} else {
|
|
// cached replacement
|
|
if (g_programs[k->name] != NULL) {
|
|
k->program = g_programs[k->name];
|
|
}
|
|
}
|
|
|
|
// hack in accumulator to convolution_horizontal_reduced_reads_1x1
|
|
if (k->name == "convolution_horizontal_reduced_reads_1x1") {
|
|
k->arg_names.push_back("doAccumulate");
|
|
short doAccumulate = 0;
|
|
k->args.push_back(string((char *)&doAccumulate, sizeof(doAccumulate)));
|
|
k->args_size.push_back(2);
|
|
k->arg_names.push_back("accumulator");
|
|
k->args.push_back(k->args[k->get_arg_num("output")]);
|
|
k->args_size.push_back(8);
|
|
k->num_args += 2;
|
|
}
|
|
|
|
// assert that parameters + batchNormBiases are not used
|
|
// since they aren't supported in custom replacement kernels
|
|
if (k->name == "convolution_horizontal_reduced_reads_1x1" ||
|
|
k->name == "convolution_horizontal_reduced_reads" ||
|
|
k->name == "convolution_horizontal_reduced_reads_5_outputs") {
|
|
string p1 = k->args[k->get_arg_num("parameters")];
|
|
string p2 = k->args[k->get_arg_num("batchNormBiases")];
|
|
assert(p1.length() == 8 && *((uint64_t*)p1.data()) == 0);
|
|
assert(p2.length() == 8 && *((uint64_t*)p2.data()) == 0);
|
|
}
|
|
}
|
|
|
|
// optimizer
|
|
size_t start_size;
|
|
do {
|
|
start_size = kq.size();
|
|
|
|
// get optimizations
|
|
map<string, string> replacements;
|
|
for (int i = 0; i < kq.size(); i++) {
|
|
// fusing elementwise_sum + activate_image will save 3 enqueues
|
|
|
|
// delete useless copy layers
|
|
// saves ~0.7 ms
|
|
if (kq[i]->name == "concatenation" || kq[i]->name == "flatten") {
|
|
string in = kq[i]->args[kq[i]->get_arg_num("input")];
|
|
string out = kq[i]->args[kq[i]->get_arg_num("output")];
|
|
if (is_same_size_image(*(cl_mem*)in.data(), *(cl_mem*)out.data())) {
|
|
cl_mem tmp = make_image_like(context, *(cl_mem *)in.data());
|
|
replacements[in] = string((char *)&tmp, sizeof(tmp));
|
|
replacements[out] = string((char *)&tmp, sizeof(tmp));
|
|
|
|
kq.erase(kq.begin()+i); --i;
|
|
}
|
|
}
|
|
|
|
// NOTE: if activations/accumulation are done in the wrong order, this will be wrong
|
|
|
|
// fuse activations into convs and fc_Wtx
|
|
// saves ~1.5 ms
|
|
// NOTE: this changes the outputs because of rounding, should be better now!
|
|
if (i != 0 && kq[i]->name == "activate_image") {
|
|
if (kq[i-1]->name == "convolution_horizontal_reduced_reads_1x1" ||
|
|
kq[i-1]->name == "convolution_horizontal_reduced_reads_5_outputs" ||
|
|
kq[i-1]->name == "convolution_horizontal_reduced_reads" ||
|
|
kq[i-1]->name == "convolution_horizontal_reduced_reads_depthwise" ||
|
|
kq[i-1]->name == "convolution_horizontal_reduced_reads_depthwise_stride_1" ||
|
|
kq[i-1]->name == "fc_Wtx") {
|
|
string lastout = kq[i-1]->args[kq[i-1]->get_arg_num("output")];
|
|
string in = kq[i]->args[kq[i]->get_arg_num("input")];
|
|
string out = kq[i]->args[kq[i]->get_arg_num("output")];
|
|
|
|
if (lastout == in) {
|
|
short neuron = *(int*)kq[i]->args[kq[i]->get_arg_num("neuron")].data();
|
|
kq[i-1]->args[kq[i-1]->get_arg_num("neuron")] = string((char *)&neuron, sizeof(neuron));
|
|
|
|
cl_mem tmp = make_image_like(context, *(cl_mem *)lastout.data());
|
|
replacements[in] = string((char *)&tmp, sizeof(tmp));
|
|
replacements[out] = string((char *)&tmp, sizeof(tmp));
|
|
|
|
kq.erase(kq.begin()+i); --i;
|
|
}
|
|
}
|
|
}
|
|
|
|
// fuse accumulation into convs and fc_Wtx
|
|
if (i != 0 && kq[i]->name == "elementwise_sum") {
|
|
if (kq[i-1]->name == "convolution_horizontal_reduced_reads_1x1" ||
|
|
kq[i-1]->name == "fc_Wtx") {
|
|
string lastout = kq[i-1]->args[kq[i-1]->get_arg_num("output")];
|
|
string a = kq[i]->args[kq[i]->get_arg_num("a")];
|
|
string b = kq[i]->args[kq[i]->get_arg_num("b")];
|
|
string out = kq[i]->args[kq[i]->get_arg_num("output")];
|
|
|
|
if (lastout == a) {
|
|
kq[i-1]->args[kq[i-1]->get_arg_num("accumulator")] = b;
|
|
} else if (lastout == b) {
|
|
kq[i-1]->args[kq[i-1]->get_arg_num("accumulator")] = a;
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
cl_mem tmp = make_image_like(context, *(cl_mem *)lastout.data());
|
|
replacements[lastout] = string((char *)&tmp, sizeof(tmp));
|
|
replacements[out] = string((char *)&tmp, sizeof(tmp));
|
|
|
|
short doAccumulate = 1;
|
|
kq[i-1]->args[kq[i-1]->get_arg_num("doAccumulate")] = string((char *)&doAccumulate, sizeof(doAccumulate));
|
|
|
|
kq.erase(kq.begin()+i); --i;
|
|
}
|
|
}
|
|
}
|
|
|
|
// remap inputs and outputs, and clear the kernels
|
|
for (int i = 0; i < kq.size(); i++) {
|
|
kq[i]->kernel = NULL;
|
|
for (int j = 0; j < kq[i]->num_args; j++) {
|
|
if (replacements.find(kq[i]->args[j]) != replacements.end()) {
|
|
kq[i]->args[j] = replacements[kq[i]->args[j]];
|
|
}
|
|
}
|
|
}
|
|
|
|
printf("optimize %lu -> %lu\n", start_size, kq.size());
|
|
} while (kq.size() != start_size);
|
|
|
|
size_t work_group_size = 0;
|
|
clGetDeviceInfo(device_id, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(work_group_size), &work_group_size, NULL);
|
|
printf("max work group size %lu\n", work_group_size);
|
|
|
|
// local work group optimizer
|
|
for (auto &k : kq) {
|
|
// only do it for convs, since others might share memory
|
|
if (k->name.rfind("convolution_", 0) == 0) {
|
|
int best = -1;
|
|
if (k->local_work_size[0] * k->local_work_size[1] * k->local_work_size[2] < work_group_size/2) {
|
|
uint64_t base_time = k->benchmark();
|
|
uint64_t best_time = base_time;
|
|
for (int i = 0; i < 3; i++) {
|
|
k->local_work_size[i] *= 2;
|
|
uint64_t this_time = k->benchmark();
|
|
if (this_time < best_time) {
|
|
best = i;
|
|
best_time = this_time;
|
|
}
|
|
k->local_work_size[i] /= 2;
|
|
}
|
|
if (best != -1) {
|
|
k->local_work_size[best] *= 2;
|
|
//printf("%s %.2f ms doubled %d to %.2f ms\n", k->name.c_str(), base_time/1e6, best, best_time/1e6);
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|