You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
433 lines
12 KiB
433 lines
12 KiB
// IRQs: USART1, USART2, USART3, UART5
|
|
|
|
// ***************************** Definitions *****************************
|
|
#define FIFO_SIZE_INT 0x400U
|
|
#define FIFO_SIZE_DMA 0x1000U
|
|
|
|
typedef struct uart_ring {
|
|
volatile uint16_t w_ptr_tx;
|
|
volatile uint16_t r_ptr_tx;
|
|
uint8_t *elems_tx;
|
|
uint32_t tx_fifo_size;
|
|
volatile uint16_t w_ptr_rx;
|
|
volatile uint16_t r_ptr_rx;
|
|
uint8_t *elems_rx;
|
|
uint32_t rx_fifo_size;
|
|
USART_TypeDef *uart;
|
|
void (*callback)(struct uart_ring*);
|
|
bool dma_rx;
|
|
} uart_ring;
|
|
|
|
#define UART_BUFFER(x, size_rx, size_tx, uart_ptr, callback_ptr, rx_dma) \
|
|
uint8_t elems_rx_##x[size_rx]; \
|
|
uint8_t elems_tx_##x[size_tx]; \
|
|
uart_ring uart_ring_##x = { \
|
|
.w_ptr_tx = 0, \
|
|
.r_ptr_tx = 0, \
|
|
.elems_tx = ((uint8_t *)&elems_tx_##x), \
|
|
.tx_fifo_size = size_tx, \
|
|
.w_ptr_rx = 0, \
|
|
.r_ptr_rx = 0, \
|
|
.elems_rx = ((uint8_t *)&elems_rx_##x), \
|
|
.rx_fifo_size = size_rx, \
|
|
.uart = uart_ptr, \
|
|
.callback = callback_ptr, \
|
|
.dma_rx = rx_dma \
|
|
};
|
|
|
|
|
|
// ***************************** Function prototypes *****************************
|
|
void uart_init(uart_ring *q, int baud);
|
|
|
|
bool getc(uart_ring *q, char *elem);
|
|
bool putc(uart_ring *q, char elem);
|
|
|
|
void puts(const char *a);
|
|
void puth(unsigned int i);
|
|
void hexdump(const void *a, int l);
|
|
|
|
void debug_ring_callback(uart_ring *ring);
|
|
|
|
// ******************************** UART buffers ********************************
|
|
|
|
// esp_gps = USART1
|
|
UART_BUFFER(esp_gps, FIFO_SIZE_DMA, FIFO_SIZE_INT, USART1, NULL, true)
|
|
|
|
// lin1, K-LINE = UART5
|
|
// lin2, L-LINE = USART3
|
|
UART_BUFFER(lin1, FIFO_SIZE_INT, FIFO_SIZE_INT, UART5, NULL, false)
|
|
UART_BUFFER(lin2, FIFO_SIZE_INT, FIFO_SIZE_INT, USART3, NULL, false)
|
|
|
|
// debug = USART2
|
|
UART_BUFFER(debug, FIFO_SIZE_INT, FIFO_SIZE_INT, USART2, debug_ring_callback, false)
|
|
|
|
uart_ring *get_ring_by_number(int a) {
|
|
uart_ring *ring = NULL;
|
|
switch(a) {
|
|
case 0:
|
|
ring = &uart_ring_debug;
|
|
break;
|
|
case 1:
|
|
ring = &uart_ring_esp_gps;
|
|
break;
|
|
case 2:
|
|
ring = &uart_ring_lin1;
|
|
break;
|
|
case 3:
|
|
ring = &uart_ring_lin2;
|
|
break;
|
|
default:
|
|
ring = NULL;
|
|
break;
|
|
}
|
|
return ring;
|
|
}
|
|
|
|
// ***************************** Interrupt handlers *****************************
|
|
|
|
void uart_tx_ring(uart_ring *q){
|
|
ENTER_CRITICAL();
|
|
// Send out next byte of TX buffer
|
|
if (q->w_ptr_tx != q->r_ptr_tx) {
|
|
// Only send if transmit register is empty (aka last byte has been sent)
|
|
if ((q->uart->SR & USART_SR_TXE) != 0) {
|
|
q->uart->DR = q->elems_tx[q->r_ptr_tx]; // This clears TXE
|
|
q->r_ptr_tx = (q->r_ptr_tx + 1U) % q->tx_fifo_size;
|
|
}
|
|
|
|
// Enable TXE interrupt if there is still data to be sent
|
|
if(q->r_ptr_tx != q->w_ptr_tx){
|
|
q->uart->CR1 |= USART_CR1_TXEIE;
|
|
} else {
|
|
q->uart->CR1 &= ~USART_CR1_TXEIE;
|
|
}
|
|
}
|
|
EXIT_CRITICAL();
|
|
}
|
|
|
|
void uart_rx_ring(uart_ring *q){
|
|
// Do not read out directly if DMA enabled
|
|
if (q->dma_rx == false) {
|
|
ENTER_CRITICAL();
|
|
|
|
// Read out RX buffer
|
|
uint8_t c = q->uart->DR; // This read after reading SR clears a bunch of interrupts
|
|
|
|
uint16_t next_w_ptr = (q->w_ptr_rx + 1U) % q->rx_fifo_size;
|
|
// Do not overwrite buffer data
|
|
if (next_w_ptr != q->r_ptr_rx) {
|
|
q->elems_rx[q->w_ptr_rx] = c;
|
|
q->w_ptr_rx = next_w_ptr;
|
|
if (q->callback != NULL) {
|
|
q->callback(q);
|
|
}
|
|
}
|
|
|
|
EXIT_CRITICAL();
|
|
}
|
|
}
|
|
|
|
// This function should be called on:
|
|
// * Half-transfer DMA interrupt
|
|
// * Full-transfer DMA interrupt
|
|
// * UART IDLE detection
|
|
uint32_t prev_w_index = 0;
|
|
void dma_pointer_handler(uart_ring *q, uint32_t dma_ndtr) {
|
|
ENTER_CRITICAL();
|
|
uint32_t w_index = (q->rx_fifo_size - dma_ndtr);
|
|
|
|
// Check for new data
|
|
if (w_index != prev_w_index){
|
|
// Check for overflow
|
|
if (
|
|
((prev_w_index < q->r_ptr_rx) && (q->r_ptr_rx <= w_index)) || // No rollover
|
|
((w_index < prev_w_index) && ((q->r_ptr_rx <= w_index) || (prev_w_index < q->r_ptr_rx))) // Rollover
|
|
){
|
|
// We lost data. Set the new read pointer to the oldest byte still available
|
|
q->r_ptr_rx = (w_index + 1U) % q->rx_fifo_size;
|
|
}
|
|
|
|
// Set write pointer
|
|
q->w_ptr_rx = w_index;
|
|
}
|
|
|
|
prev_w_index = w_index;
|
|
EXIT_CRITICAL();
|
|
}
|
|
|
|
// This read after reading SR clears all error interrupts. We don't want compiler warnings, nor optimizations
|
|
#define UART_READ_DR(uart) volatile uint8_t t = (uart)->DR; UNUSED(t);
|
|
|
|
void uart_interrupt_handler(uart_ring *q) {
|
|
ENTER_CRITICAL();
|
|
|
|
// Read UART status. This is also the first step necessary in clearing most interrupts
|
|
uint32_t status = q->uart->SR;
|
|
|
|
// If RXNE is set, perform a read. This clears RXNE, ORE, IDLE, NF and FE
|
|
if((status & USART_SR_RXNE) != 0U){
|
|
uart_rx_ring(q);
|
|
}
|
|
|
|
// Detect errors and clear them
|
|
uint32_t err = (status & USART_SR_ORE) | (status & USART_SR_NE) | (status & USART_SR_FE) | (status & USART_SR_PE);
|
|
if(err != 0U){
|
|
#ifdef DEBUG_UART
|
|
puts("Encountered UART error: "); puth(err); puts("\n");
|
|
#endif
|
|
UART_READ_DR(q->uart)
|
|
}
|
|
// Send if necessary
|
|
uart_tx_ring(q);
|
|
|
|
// Run DMA pointer handler if the line is idle
|
|
if(q->dma_rx && (status & USART_SR_IDLE)){
|
|
// Reset IDLE flag
|
|
UART_READ_DR(q->uart)
|
|
|
|
if(q == &uart_ring_esp_gps){
|
|
dma_pointer_handler(&uart_ring_esp_gps, DMA2_Stream5->NDTR);
|
|
} else {
|
|
#ifdef DEBUG_UART
|
|
puts("No IDLE dma_pointer_handler implemented for this UART.");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
EXIT_CRITICAL();
|
|
}
|
|
|
|
void USART1_IRQHandler(void) { uart_interrupt_handler(&uart_ring_esp_gps); }
|
|
void USART2_IRQHandler(void) { uart_interrupt_handler(&uart_ring_debug); }
|
|
void USART3_IRQHandler(void) { uart_interrupt_handler(&uart_ring_lin2); }
|
|
void UART5_IRQHandler(void) { uart_interrupt_handler(&uart_ring_lin1); }
|
|
|
|
void DMA2_Stream5_IRQHandler(void) {
|
|
ENTER_CRITICAL();
|
|
|
|
// Handle errors
|
|
if((DMA2->HISR & DMA_HISR_TEIF5) || (DMA2->HISR & DMA_HISR_DMEIF5) || (DMA2->HISR & DMA_HISR_FEIF5)){
|
|
#ifdef DEBUG_UART
|
|
puts("Encountered UART DMA error. Clearing and restarting DMA...\n");
|
|
#endif
|
|
|
|
// Clear flags
|
|
DMA2->HIFCR = DMA_HIFCR_CTEIF5 | DMA_HIFCR_CDMEIF5 | DMA_HIFCR_CFEIF5;
|
|
|
|
// Re-enable the DMA if necessary
|
|
DMA2_Stream5->CR |= DMA_SxCR_EN;
|
|
}
|
|
|
|
// Re-calculate write pointer and reset flags
|
|
dma_pointer_handler(&uart_ring_esp_gps, DMA2_Stream5->NDTR);
|
|
DMA2->HIFCR = DMA_HIFCR_CTCIF5 | DMA_HIFCR_CHTIF5;
|
|
|
|
EXIT_CRITICAL();
|
|
}
|
|
|
|
// ***************************** Hardware setup *****************************
|
|
|
|
void dma_rx_init(uart_ring *q) {
|
|
// Initialization is UART-dependent
|
|
if(q == &uart_ring_esp_gps){
|
|
// DMA2, stream 5, channel 4
|
|
|
|
// Disable FIFO mode (enable direct)
|
|
DMA2_Stream5->FCR &= ~DMA_SxFCR_DMDIS;
|
|
|
|
// Setup addresses
|
|
DMA2_Stream5->PAR = (uint32_t)&(USART1->DR); // Source
|
|
DMA2_Stream5->M0AR = (uint32_t)q->elems_rx; // Destination
|
|
DMA2_Stream5->NDTR = q->rx_fifo_size; // Number of bytes to copy
|
|
|
|
// Circular, Increment memory, byte size, periph -> memory, enable
|
|
// Transfer complete, half transfer, transfer error and direct mode error interrupt enable
|
|
DMA2_Stream5->CR = DMA_SxCR_CHSEL_2 | DMA_SxCR_MINC | DMA_SxCR_CIRC | DMA_SxCR_HTIE | DMA_SxCR_TCIE | DMA_SxCR_TEIE | DMA_SxCR_DMEIE | DMA_SxCR_EN;
|
|
|
|
// Enable DMA receiver in UART
|
|
q->uart->CR3 |= USART_CR3_DMAR;
|
|
|
|
// Enable UART IDLE interrupt
|
|
q->uart->CR1 |= USART_CR1_IDLEIE;
|
|
|
|
// Enable interrupt
|
|
NVIC_EnableIRQ(DMA2_Stream5_IRQn);
|
|
} else {
|
|
puts("Tried to initialize RX DMA for an unsupported UART\n");
|
|
}
|
|
}
|
|
|
|
#define __DIV(_PCLK_, _BAUD_) (((_PCLK_) * 25U) / (4U * (_BAUD_)))
|
|
#define __DIVMANT(_PCLK_, _BAUD_) (__DIV((_PCLK_), (_BAUD_)) / 100U)
|
|
#define __DIVFRAQ(_PCLK_, _BAUD_) ((((__DIV((_PCLK_), (_BAUD_)) - (__DIVMANT((_PCLK_), (_BAUD_)) * 100U)) * 16U) + 50U) / 100U)
|
|
#define __USART_BRR(_PCLK_, _BAUD_) ((__DIVMANT((_PCLK_), (_BAUD_)) << 4) | (__DIVFRAQ((_PCLK_), (_BAUD_)) & 0x0FU))
|
|
|
|
void uart_set_baud(USART_TypeDef *u, unsigned int baud) {
|
|
if (u == USART1) {
|
|
// USART1 is on APB2
|
|
u->BRR = __USART_BRR(48000000U, baud);
|
|
} else {
|
|
u->BRR = __USART_BRR(24000000U, baud);
|
|
}
|
|
}
|
|
|
|
void uart_init(uart_ring *q, int baud) {
|
|
// Set baud and enable peripheral with TX and RX mode
|
|
uart_set_baud(q->uart, baud);
|
|
q->uart->CR1 = USART_CR1_UE | USART_CR1_TE | USART_CR1_RE;
|
|
|
|
// Enable UART interrupts
|
|
if(q->uart == USART1){
|
|
NVIC_EnableIRQ(USART1_IRQn);
|
|
} else if (q->uart == USART2){
|
|
NVIC_EnableIRQ(USART2_IRQn);
|
|
} else if (q->uart == USART3){
|
|
NVIC_EnableIRQ(USART3_IRQn);
|
|
} else if (q->uart == UART5){
|
|
NVIC_EnableIRQ(UART5_IRQn);
|
|
} else {
|
|
// UART not used. Skip enabling interrupts
|
|
}
|
|
|
|
// Initialise RX DMA if used
|
|
if(q->dma_rx){
|
|
dma_rx_init(q);
|
|
}
|
|
}
|
|
|
|
// ************************* Low-level buffer functions *************************
|
|
|
|
bool getc(uart_ring *q, char *elem) {
|
|
bool ret = false;
|
|
|
|
ENTER_CRITICAL();
|
|
if (q->w_ptr_rx != q->r_ptr_rx) {
|
|
if (elem != NULL) *elem = q->elems_rx[q->r_ptr_rx];
|
|
q->r_ptr_rx = (q->r_ptr_rx + 1U) % q->rx_fifo_size;
|
|
ret = true;
|
|
}
|
|
EXIT_CRITICAL();
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool injectc(uart_ring *q, char elem) {
|
|
int ret = false;
|
|
uint16_t next_w_ptr;
|
|
|
|
ENTER_CRITICAL();
|
|
next_w_ptr = (q->w_ptr_rx + 1U) % q->tx_fifo_size;
|
|
if (next_w_ptr != q->r_ptr_rx) {
|
|
q->elems_rx[q->w_ptr_rx] = elem;
|
|
q->w_ptr_rx = next_w_ptr;
|
|
ret = true;
|
|
}
|
|
EXIT_CRITICAL();
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool putc(uart_ring *q, char elem) {
|
|
bool ret = false;
|
|
uint16_t next_w_ptr;
|
|
|
|
ENTER_CRITICAL();
|
|
next_w_ptr = (q->w_ptr_tx + 1U) % q->tx_fifo_size;
|
|
if (next_w_ptr != q->r_ptr_tx) {
|
|
q->elems_tx[q->w_ptr_tx] = elem;
|
|
q->w_ptr_tx = next_w_ptr;
|
|
ret = true;
|
|
}
|
|
EXIT_CRITICAL();
|
|
|
|
uart_tx_ring(q);
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Seems dangerous to use (might lock CPU if called with interrupts disabled f.e.)
|
|
// TODO: Remove? Not used anyways
|
|
void uart_flush(uart_ring *q) {
|
|
while (q->w_ptr_tx != q->r_ptr_tx) {
|
|
__WFI();
|
|
}
|
|
}
|
|
|
|
void uart_flush_sync(uart_ring *q) {
|
|
// empty the TX buffer
|
|
while (q->w_ptr_tx != q->r_ptr_tx) {
|
|
uart_tx_ring(q);
|
|
}
|
|
}
|
|
|
|
void uart_send_break(uart_ring *u) {
|
|
while ((u->uart->CR1 & USART_CR1_SBK) != 0);
|
|
u->uart->CR1 |= USART_CR1_SBK;
|
|
}
|
|
|
|
void clear_uart_buff(uart_ring *q) {
|
|
ENTER_CRITICAL();
|
|
q->w_ptr_tx = 0;
|
|
q->r_ptr_tx = 0;
|
|
q->w_ptr_rx = 0;
|
|
q->r_ptr_rx = 0;
|
|
EXIT_CRITICAL();
|
|
}
|
|
|
|
// ************************ High-level debug functions **********************
|
|
void putch(const char a) {
|
|
if (has_external_debug_serial) {
|
|
// assuming debugging is important if there's external serial connected
|
|
while (!putc(&uart_ring_debug, a));
|
|
|
|
} else {
|
|
// misra-c2012-17.7: serial debug function, ok to ignore output
|
|
(void)injectc(&uart_ring_debug, a);
|
|
}
|
|
}
|
|
|
|
void puts(const char *a) {
|
|
for (const char *in = a; *in; in++) {
|
|
if (*in == '\n') putch('\r');
|
|
putch(*in);
|
|
}
|
|
}
|
|
|
|
void putui(uint32_t i) {
|
|
uint32_t i_copy = i;
|
|
char str[11];
|
|
uint8_t idx = 10;
|
|
str[idx] = '\0';
|
|
idx--;
|
|
do {
|
|
str[idx] = (i_copy % 10U) + 0x30U;
|
|
idx--;
|
|
i_copy /= 10;
|
|
} while (i_copy != 0U);
|
|
puts(&str[idx + 1U]);
|
|
}
|
|
|
|
void puth(unsigned int i) {
|
|
char c[] = "0123456789abcdef";
|
|
for (int pos = 28; pos != -4; pos -= 4) {
|
|
putch(c[(i >> (unsigned int)(pos)) & 0xFU]);
|
|
}
|
|
}
|
|
|
|
void puth2(unsigned int i) {
|
|
char c[] = "0123456789abcdef";
|
|
for (int pos = 4; pos != -4; pos -= 4) {
|
|
putch(c[(i >> (unsigned int)(pos)) & 0xFU]);
|
|
}
|
|
}
|
|
|
|
void hexdump(const void *a, int l) {
|
|
if (a != NULL) {
|
|
for (int i=0; i < l; i++) {
|
|
if ((i != 0) && ((i & 0xf) == 0)) puts("\n");
|
|
puth2(((const unsigned char*)a)[i]);
|
|
puts(" ");
|
|
}
|
|
}
|
|
puts("\n");
|
|
}
|
|
|