openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

89 lines
3.7 KiB

import math
from cereal import log
from common.numpy_fast import interp
from selfdrive.controls.lib.latcontrol import LatControl, MIN_STEER_SPEED
from selfdrive.controls.lib.pid import PIDController
from selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
# At higher speeds (25+mph) we can assume:
# Lateral acceleration achieved by a specific car correlates to
# torque applied to the steering rack. It does not correlate to
# wheel slip, or to speed.
# This controller applies torque to achieve desired lateral
# accelerations. To compensate for the low speed effects we
# use a LOW_SPEED_FACTOR in the error. Additionally, there is
# friction in the steering wheel that needs to be overcome to
# move it at all, this is compensated for too.
LOW_SPEED_FACTOR = 200
JERK_THRESHOLD = 0.2
def set_torque_tune(tune, MAX_LAT_ACCEL=2.5, FRICTION=.1):
tune.init('torque')
tune.torque.useSteeringAngle = True
tune.torque.kp = 1.0 / MAX_LAT_ACCEL
tune.torque.kf = 1.0 / MAX_LAT_ACCEL
tune.torque.ki = 0.1 / MAX_LAT_ACCEL
tune.torque.friction = FRICTION
class LatControlTorque(LatControl):
def __init__(self, CP, CI):
super().__init__(CP, CI)
self.pid = PIDController(CP.lateralTuning.torque.kp, CP.lateralTuning.torque.ki,
k_f=CP.lateralTuning.torque.kf, pos_limit=self.steer_max, neg_limit=-self.steer_max)
self.get_steer_feedforward = CI.get_steer_feedforward_function()
self.use_steering_angle = CP.lateralTuning.torque.useSteeringAngle
self.friction = CP.lateralTuning.torque.friction
self.kf = CP.lateralTuning.torque.kf
def reset(self):
super().reset()
self.pid.reset()
def update(self, active, CS, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk):
pid_log = log.ControlsState.LateralTorqueState.new_message()
if CS.vEgo < MIN_STEER_SPEED or not active:
output_torque = 0.0
pid_log.active = False
else:
if self.use_steering_angle:
actual_curvature = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll)
else:
actual_curvature = llk.angularVelocityCalibrated.value[2] / CS.vEgo
desired_lateral_accel = desired_curvature * CS.vEgo ** 2
desired_lateral_jerk = desired_curvature_rate * CS.vEgo ** 2
actual_lateral_accel = actual_curvature * CS.vEgo ** 2
setpoint = desired_lateral_accel + LOW_SPEED_FACTOR * desired_curvature
measurement = actual_lateral_accel + LOW_SPEED_FACTOR * actual_curvature
error = setpoint - measurement
pid_log.error = error
ff = desired_lateral_accel - params.roll * ACCELERATION_DUE_TO_GRAVITY
# convert friction into lateral accel units for feedforward
friction_compensation = interp(desired_lateral_jerk, [-JERK_THRESHOLD, JERK_THRESHOLD], [-self.friction, self.friction])
ff += friction_compensation / self.kf
freeze_integrator = CS.steeringRateLimited or CS.steeringPressed or CS.vEgo < 5
output_torque = self.pid.update(error,
feedforward=ff,
speed=CS.vEgo,
freeze_integrator=freeze_integrator)
pid_log.active = True
pid_log.p = self.pid.p
pid_log.i = self.pid.i
pid_log.d = self.pid.d
pid_log.f = self.pid.f
pid_log.output = -output_torque
pid_log.saturated = self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS)
pid_log.actualLateralAccel = actual_lateral_accel
pid_log.desiredLateralAccel = desired_lateral_accel
# TODO left is positive in this convention
return -output_torque, 0.0, pid_log