You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
440 lines
16 KiB
440 lines
16 KiB
import colorsys
|
|
import numpy as np
|
|
import pyray as rl
|
|
from cereal import messaging, car
|
|
from dataclasses import dataclass, field
|
|
from openpilot.common.params import Params
|
|
from openpilot.selfdrive.ui.ui_state import ui_state
|
|
from openpilot.system.ui.lib.application import DEFAULT_FPS, Widget
|
|
from openpilot.system.ui.lib.shader_polygon import draw_polygon
|
|
from openpilot.selfdrive.locationd.calibrationd import HEIGHT_INIT
|
|
|
|
CLIP_MARGIN = 500
|
|
MIN_DRAW_DISTANCE = 10.0
|
|
MAX_DRAW_DISTANCE = 100.0
|
|
PATH_COLOR_TRANSITION_DURATION = 0.5 # Seconds for color transition animation
|
|
PATH_BLEND_INCREMENT = 1.0 / (PATH_COLOR_TRANSITION_DURATION * DEFAULT_FPS)
|
|
|
|
MAX_POINTS = 200
|
|
|
|
THROTTLE_COLORS = [
|
|
rl.Color(13, 248, 122, 102), # HSLF(148/360, 0.94, 0.51, 0.4)
|
|
rl.Color(114, 255, 92, 89), # HSLF(112/360, 1.0, 0.68, 0.35)
|
|
rl.Color(114, 255, 92, 0), # HSLF(112/360, 1.0, 0.68, 0.0)
|
|
]
|
|
|
|
NO_THROTTLE_COLORS = [
|
|
rl.Color(242, 242, 242, 102), # HSLF(148/360, 0.0, 0.95, 0.4)
|
|
rl.Color(242, 242, 242, 89), # HSLF(112/360, 0.0, 0.95, 0.35)
|
|
rl.Color(242, 242, 242, 0), # HSLF(112/360, 0.0, 0.95, 0.0)
|
|
]
|
|
|
|
|
|
@dataclass
|
|
class ModelPoints:
|
|
raw_points: np.ndarray = field(default_factory=lambda: np.empty((0, 3), dtype=np.float32))
|
|
projected_points: np.ndarray = field(default_factory=lambda: np.empty((0, 2), dtype=np.float32))
|
|
|
|
|
|
@dataclass
|
|
class LeadVehicle:
|
|
glow: list[float] = field(default_factory=list)
|
|
chevron: list[float] = field(default_factory=list)
|
|
fill_alpha: int = 0
|
|
|
|
|
|
class ModelRenderer(Widget):
|
|
def __init__(self):
|
|
self._longitudinal_control = False
|
|
self._experimental_mode = False
|
|
self._blend_factor = 1.0
|
|
self._prev_allow_throttle = True
|
|
self._lane_line_probs = np.zeros(4, dtype=np.float32)
|
|
self._road_edge_stds = np.zeros(2, dtype=np.float32)
|
|
self._lead_vehicles = [LeadVehicle(), LeadVehicle()]
|
|
self._path_offset_z = HEIGHT_INIT[0]
|
|
|
|
# Initialize ModelPoints objects
|
|
self._path = ModelPoints()
|
|
self._lane_lines = [ModelPoints() for _ in range(4)]
|
|
self._road_edges = [ModelPoints() for _ in range(2)]
|
|
self._acceleration_x = np.empty((0,), dtype=np.float32)
|
|
|
|
# Transform matrix (3x3 for car space to screen space)
|
|
self._car_space_transform = np.zeros((3, 3), dtype=np.float32)
|
|
self._transform_dirty = True
|
|
self._clip_region = None
|
|
self._rect = None
|
|
|
|
# Pre-allocated arrays for polygon conversion
|
|
self._temp_points_3d = np.empty((MAX_POINTS * 2, 3), dtype=np.float32)
|
|
self._temp_proj = np.empty((3, MAX_POINTS * 2), dtype=np.float32)
|
|
|
|
self._exp_gradient = {
|
|
'start': (0.0, 1.0), # Bottom of path
|
|
'end': (0.0, 0.0), # Top of path
|
|
'colors': [],
|
|
'stops': [],
|
|
}
|
|
|
|
# Get longitudinal control setting from car parameters
|
|
if car_params := Params().get("CarParams"):
|
|
cp = messaging.log_from_bytes(car_params, car.CarParams)
|
|
self._longitudinal_control = cp.openpilotLongitudinalControl
|
|
|
|
def set_transform(self, transform: np.ndarray):
|
|
self._car_space_transform = transform.astype(np.float32)
|
|
self._transform_dirty = True
|
|
|
|
def render(self, rect: rl.Rectangle):
|
|
sm = ui_state.sm
|
|
|
|
# Check if data is up-to-date
|
|
if (sm.recv_frame["liveCalibration"] < ui_state.started_frame or
|
|
sm.recv_frame["modelV2"] < ui_state.started_frame):
|
|
return
|
|
|
|
# Set up clipping region
|
|
self._rect = rect
|
|
self._clip_region = rl.Rectangle(
|
|
rect.x - CLIP_MARGIN, rect.y - CLIP_MARGIN, rect.width + 2 * CLIP_MARGIN, rect.height + 2 * CLIP_MARGIN
|
|
)
|
|
|
|
# Update state
|
|
self._experimental_mode = sm['selfdriveState'].experimentalMode
|
|
|
|
live_calib = sm['liveCalibration']
|
|
self._path_offset_z = live_calib.height[0] if live_calib.height else HEIGHT_INIT[0]
|
|
|
|
if sm.updated['carParams']:
|
|
self._longitudinal_control = sm['carParams'].openpilotLongitudinalControl
|
|
|
|
model = sm['modelV2']
|
|
radar_state = sm['radarState'] if sm.valid['radarState'] else None
|
|
lead_one = radar_state.leadOne if radar_state else None
|
|
render_lead_indicator = self._longitudinal_control and radar_state is not None
|
|
|
|
# Update model data when needed
|
|
model_updated = sm.updated['modelV2']
|
|
if model_updated or sm.updated['radarState'] or self._transform_dirty:
|
|
if model_updated:
|
|
self._update_raw_points(model)
|
|
|
|
path_x_array = self._path.raw_points[:, 0]
|
|
if path_x_array.size == 0:
|
|
return
|
|
|
|
self._update_model(lead_one, path_x_array)
|
|
if render_lead_indicator:
|
|
self._update_leads(radar_state, path_x_array)
|
|
self._transform_dirty = False
|
|
|
|
# Draw elements
|
|
self._draw_lane_lines()
|
|
self._draw_path(sm)
|
|
|
|
if render_lead_indicator and radar_state:
|
|
self._draw_lead_indicator()
|
|
|
|
def _update_raw_points(self, model):
|
|
"""Update raw 3D points from model data"""
|
|
self._path.raw_points = np.array([model.position.x, model.position.y, model.position.z], dtype=np.float32).T
|
|
|
|
for i, lane_line in enumerate(model.laneLines):
|
|
self._lane_lines[i].raw_points = np.array([lane_line.x, lane_line.y, lane_line.z], dtype=np.float32).T
|
|
|
|
for i, road_edge in enumerate(model.roadEdges):
|
|
self._road_edges[i].raw_points = np.array([road_edge.x, road_edge.y, road_edge.z], dtype=np.float32).T
|
|
|
|
self._lane_line_probs = np.array(model.laneLineProbs, dtype=np.float32)
|
|
self._road_edge_stds = np.array(model.roadEdgeStds, dtype=np.float32)
|
|
self._acceleration_x = np.array(model.acceleration.x, dtype=np.float32)
|
|
|
|
def _update_leads(self, radar_state, path_x_array):
|
|
"""Update positions of lead vehicles"""
|
|
self._lead_vehicles = [LeadVehicle(), LeadVehicle()]
|
|
leads = [radar_state.leadOne, radar_state.leadTwo]
|
|
|
|
for i, lead_data in enumerate(leads):
|
|
if lead_data and lead_data.status:
|
|
d_rel, y_rel, v_rel = lead_data.dRel, lead_data.yRel, lead_data.vRel
|
|
idx = self._get_path_length_idx(path_x_array, d_rel)
|
|
|
|
# Get z-coordinate from path at the lead vehicle position
|
|
z = self._path.raw_points[idx, 2] if idx < len(self._path.raw_points) else 0.0
|
|
point = self._map_to_screen(d_rel, -y_rel, z + self._path_offset_z)
|
|
if point:
|
|
self._lead_vehicles[i] = self._update_lead_vehicle(d_rel, v_rel, point, self._rect)
|
|
|
|
def _update_model(self, lead, path_x_array):
|
|
"""Update model visualization data based on model message"""
|
|
max_distance = np.clip(path_x_array[-1], MIN_DRAW_DISTANCE, MAX_DRAW_DISTANCE)
|
|
max_idx = self._get_path_length_idx(self._lane_lines[0].raw_points[:, 0], max_distance)
|
|
|
|
# Update lane lines using raw points
|
|
for i, lane_line in enumerate(self._lane_lines):
|
|
lane_line.projected_points = self._map_line_to_polygon(
|
|
lane_line.raw_points, 0.025 * self._lane_line_probs[i], 0.0, max_idx
|
|
)
|
|
|
|
# Update road edges using raw points
|
|
for road_edge in self._road_edges:
|
|
road_edge.projected_points = self._map_line_to_polygon(road_edge.raw_points, 0.025, 0.0, max_idx)
|
|
|
|
# Update path using raw points
|
|
if lead and lead.status:
|
|
lead_d = lead.dRel * 2.0
|
|
max_distance = np.clip(lead_d - min(lead_d * 0.35, 10.0), 0.0, max_distance)
|
|
|
|
max_idx = self._get_path_length_idx(path_x_array, max_distance)
|
|
self._path.projected_points = self._map_line_to_polygon(
|
|
self._path.raw_points, 0.9, self._path_offset_z, max_idx, allow_invert=False
|
|
)
|
|
|
|
self._update_experimental_gradient(self._rect.height)
|
|
|
|
def _update_experimental_gradient(self, height):
|
|
"""Pre-calculate experimental mode gradient colors"""
|
|
if not self._experimental_mode:
|
|
return
|
|
|
|
max_len = min(len(self._path.projected_points) // 2, len(self._acceleration_x))
|
|
|
|
segment_colors = []
|
|
gradient_stops = []
|
|
|
|
i = 0
|
|
while i < max_len:
|
|
track_idx = max_len - i - 1 # flip idx to start from bottom right
|
|
track_y = self._path.projected_points[track_idx][1]
|
|
if track_y < 0 or track_y > height:
|
|
i += 1
|
|
continue
|
|
|
|
# Calculate color based on acceleration
|
|
lin_grad_point = (height - track_y) / height
|
|
|
|
# speed up: 120, slow down: 0
|
|
path_hue = max(min(60 + self._acceleration_x[i] * 35, 120), 0)
|
|
path_hue = int(path_hue * 100 + 0.5) / 100
|
|
|
|
saturation = min(abs(self._acceleration_x[i] * 1.5), 1)
|
|
lightness = self._map_val(saturation, 0.0, 1.0, 0.95, 0.62)
|
|
alpha = self._map_val(lin_grad_point, 0.75 / 2.0, 0.75, 0.4, 0.0)
|
|
|
|
# Use HSL to RGB conversion
|
|
color = self._hsla_to_color(path_hue / 360.0, saturation, lightness, alpha)
|
|
|
|
gradient_stops.append(lin_grad_point)
|
|
segment_colors.append(color)
|
|
|
|
# Skip a point, unless next is last
|
|
i += 1 + (1 if (i + 2) < max_len else 0)
|
|
|
|
# Store the gradient in the path object
|
|
self._exp_gradient['colors'] = segment_colors
|
|
self._exp_gradient['stops'] = gradient_stops
|
|
|
|
def _update_lead_vehicle(self, d_rel, v_rel, point, rect):
|
|
speed_buff, lead_buff = 10.0, 40.0
|
|
|
|
# Calculate fill alpha
|
|
fill_alpha = 0
|
|
if d_rel < lead_buff:
|
|
fill_alpha = 255 * (1.0 - (d_rel / lead_buff))
|
|
if v_rel < 0:
|
|
fill_alpha += 255 * (-1 * (v_rel / speed_buff))
|
|
fill_alpha = min(fill_alpha, 255)
|
|
|
|
# Calculate size and position
|
|
sz = np.clip((25 * 30) / (d_rel / 3 + 30), 15.0, 30.0) * 2.35
|
|
x = np.clip(point[0], 0.0, rect.width - sz / 2)
|
|
y = min(point[1], rect.height - sz * 0.6)
|
|
|
|
g_xo = sz / 5
|
|
g_yo = sz / 10
|
|
|
|
glow = [(x + (sz * 1.35) + g_xo, y + sz + g_yo), (x, y - g_yo), (x - (sz * 1.35) - g_xo, y + sz + g_yo)]
|
|
chevron = [(x + (sz * 1.25), y + sz), (x, y), (x - (sz * 1.25), y + sz)]
|
|
|
|
return LeadVehicle(glow=glow, chevron=chevron, fill_alpha=int(fill_alpha))
|
|
|
|
def _draw_lane_lines(self):
|
|
"""Draw lane lines and road edges"""
|
|
for i, lane_line in enumerate(self._lane_lines):
|
|
if lane_line.projected_points.size == 0:
|
|
continue
|
|
|
|
alpha = np.clip(self._lane_line_probs[i], 0.0, 0.7)
|
|
color = rl.Color(255, 255, 255, int(alpha * 255))
|
|
draw_polygon(self._rect, lane_line.projected_points, color)
|
|
|
|
for i, road_edge in enumerate(self._road_edges):
|
|
if road_edge.projected_points.size == 0:
|
|
continue
|
|
|
|
alpha = np.clip(1.0 - self._road_edge_stds[i], 0.0, 1.0)
|
|
color = rl.Color(255, 0, 0, int(alpha * 255))
|
|
draw_polygon(self._rect, road_edge.projected_points, color)
|
|
|
|
def _draw_path(self, sm):
|
|
"""Draw path with dynamic coloring based on mode and throttle state."""
|
|
if not self._path.projected_points.size:
|
|
return
|
|
|
|
if self._experimental_mode:
|
|
# Draw with acceleration coloring
|
|
if len(self._exp_gradient['colors']) > 2:
|
|
draw_polygon(self._rect, self._path.projected_points, gradient=self._exp_gradient)
|
|
else:
|
|
draw_polygon(self._rect, self._path.projected_points, rl.Color(255, 255, 255, 30))
|
|
else:
|
|
# Draw with throttle/no throttle gradient
|
|
allow_throttle = sm['longitudinalPlan'].allowThrottle or not self._longitudinal_control
|
|
|
|
# Start transition if throttle state changes
|
|
if allow_throttle != self._prev_allow_throttle:
|
|
self._prev_allow_throttle = allow_throttle
|
|
self._blend_factor = max(1.0 - self._blend_factor, 0.0)
|
|
|
|
# Update blend factor
|
|
if self._blend_factor < 1.0:
|
|
self._blend_factor = min(self._blend_factor + PATH_BLEND_INCREMENT, 1.0)
|
|
|
|
begin_colors = NO_THROTTLE_COLORS if allow_throttle else THROTTLE_COLORS
|
|
end_colors = THROTTLE_COLORS if allow_throttle else NO_THROTTLE_COLORS
|
|
|
|
# Blend colors based on transition
|
|
blended_colors = self._blend_colors(begin_colors, end_colors, self._blend_factor)
|
|
gradient = {
|
|
'start': (0.0, 1.0), # Bottom of path
|
|
'end': (0.0, 0.0), # Top of path
|
|
'colors': blended_colors,
|
|
'stops': [0.0, 0.5, 1.0],
|
|
}
|
|
draw_polygon(self._rect, self._path.projected_points, gradient=gradient)
|
|
|
|
def _draw_lead_indicator(self):
|
|
# Draw lead vehicles if available
|
|
for lead in self._lead_vehicles:
|
|
if not lead.glow or not lead.chevron:
|
|
continue
|
|
|
|
rl.draw_triangle_fan(lead.glow, len(lead.glow), rl.Color(218, 202, 37, 255))
|
|
rl.draw_triangle_fan(lead.chevron, len(lead.chevron), rl.Color(201, 34, 49, lead.fill_alpha))
|
|
|
|
@staticmethod
|
|
def _get_path_length_idx(pos_x_array: np.ndarray, path_height: float) -> int:
|
|
"""Get the index corresponding to the given path height"""
|
|
if len(pos_x_array) == 0:
|
|
return 0
|
|
indices = np.where(pos_x_array <= path_height)[0]
|
|
return indices[-1] if indices.size > 0 else 0
|
|
|
|
def _map_to_screen(self, in_x, in_y, in_z):
|
|
"""Project a point in car space to screen space"""
|
|
input_pt = np.array([in_x, in_y, in_z])
|
|
pt = self._car_space_transform @ input_pt
|
|
|
|
if abs(pt[2]) < 1e-6:
|
|
return None
|
|
|
|
x, y = pt[0] / pt[2], pt[1] / pt[2]
|
|
|
|
clip = self._clip_region
|
|
if not (clip.x <= x <= clip.x + clip.width and clip.y <= y <= clip.y + clip.height):
|
|
return None
|
|
|
|
return (x, y)
|
|
|
|
def _map_line_to_polygon(self, line: np.ndarray, y_off: float, z_off: float, max_idx: int, allow_invert: bool = True) -> np.ndarray:
|
|
"""Convert 3D line to 2D polygon for rendering."""
|
|
if line.shape[0] == 0:
|
|
return np.empty((0, 2), dtype=np.float32)
|
|
|
|
# Slice points and filter non-negative x-coordinates
|
|
points = line[:max_idx + 1]
|
|
points = points[points[:, 0] >= 0]
|
|
if points.shape[0] == 0:
|
|
return np.empty((0, 2), dtype=np.float32)
|
|
|
|
# Create left and right 3D points in one array
|
|
n_points = points.shape[0]
|
|
points_3d = self._temp_points_3d[:n_points * 2]
|
|
points_3d[:n_points, 0] = points_3d[n_points:, 0] = points[:, 0]
|
|
points_3d[:n_points, 1] = points[:, 1] - y_off
|
|
points_3d[n_points:, 1] = points[:, 1] + y_off
|
|
points_3d[:n_points, 2] = points_3d[n_points:, 2] = points[:, 2] + z_off
|
|
|
|
# Single matrix multiplication for projections
|
|
proj = np.ascontiguousarray(self._temp_proj[:, :n_points * 2]) # Slice the pre-allocated array
|
|
np.dot(self._car_space_transform, points_3d.T, out=proj)
|
|
valid_z = np.abs(proj[2]) > 1e-6
|
|
if not np.any(valid_z):
|
|
return np.empty((0, 2), dtype=np.float32)
|
|
|
|
# Compute screen coordinates
|
|
screen = proj[:2, valid_z] / proj[2, valid_z][None, :]
|
|
left_screen = screen[:, :n_points].T
|
|
right_screen = screen[:, n_points:].T
|
|
|
|
# Ensure consistent shapes by re-aligning valid points
|
|
valid_points = np.minimum(left_screen.shape[0], right_screen.shape[0])
|
|
if valid_points == 0:
|
|
return np.empty((0, 2), dtype=np.float32)
|
|
left_screen = left_screen[:valid_points]
|
|
right_screen = right_screen[:valid_points]
|
|
|
|
if self._clip_region:
|
|
clip = self._clip_region
|
|
bounds_mask = (
|
|
(left_screen[:, 0] >= clip.x) & (left_screen[:, 0] <= clip.x + clip.width) &
|
|
(left_screen[:, 1] >= clip.y) & (left_screen[:, 1] <= clip.y + clip.height) &
|
|
(right_screen[:, 0] >= clip.x) & (right_screen[:, 0] <= clip.x + clip.width) &
|
|
(right_screen[:, 1] >= clip.y) & (right_screen[:, 1] <= clip.y + clip.height)
|
|
)
|
|
if not np.any(bounds_mask):
|
|
return np.empty((0, 2), dtype=np.float32)
|
|
left_screen = left_screen[bounds_mask]
|
|
right_screen = right_screen[bounds_mask]
|
|
|
|
if not allow_invert and left_screen.shape[0] > 1:
|
|
keep = np.concatenate(([True], np.diff(left_screen[:, 1]) < 0))
|
|
left_screen = left_screen[keep]
|
|
right_screen = right_screen[keep]
|
|
if left_screen.shape[0] == 0:
|
|
return np.empty((0, 2), dtype=np.float32)
|
|
|
|
return np.vstack((left_screen, right_screen[::-1])).astype(np.float32)
|
|
|
|
@staticmethod
|
|
def _map_val(x, x0, x1, y0, y1):
|
|
x = np.clip(x, x0, x1)
|
|
ra = x1 - x0
|
|
rb = y1 - y0
|
|
return (x - x0) * rb / ra + y0 if ra != 0 else y0
|
|
|
|
@staticmethod
|
|
def _hsla_to_color(h, s, l, a):
|
|
rgb = colorsys.hls_to_rgb(h, l, s)
|
|
return rl.Color(
|
|
int(rgb[0] * 255),
|
|
int(rgb[1] * 255),
|
|
int(rgb[2] * 255),
|
|
int(a * 255)
|
|
)
|
|
|
|
@staticmethod
|
|
def _blend_colors(begin_colors, end_colors, t):
|
|
if t >= 1.0:
|
|
return end_colors
|
|
if t <= 0.0:
|
|
return begin_colors
|
|
|
|
inv_t = 1.0 - t
|
|
return [rl.Color(
|
|
int(inv_t * start.r + t * end.r),
|
|
int(inv_t * start.g + t * end.g),
|
|
int(inv_t * start.b + t * end.b),
|
|
int(inv_t * start.a + t * end.a)
|
|
) for start, end in zip(begin_colors, end_colors, strict=True)]
|
|
|