openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

116 lines
3.1 KiB

import numpy as np
import numpy.matlib
import unittest
import timeit
from common.kalman.ekf import EKF, SimpleSensor, FastEKF1D
class TestEKF(EKF):
def __init__(self, var_init, Q):
super(TestEKF, self).__init__(False)
self.identity = numpy.matlib.identity(2)
self.state = numpy.matlib.zeros((2, 1))
self.covar = self.identity * var_init
self.process_noise = numpy.matlib.diag(Q)
def calc_transfer_fun(self, dt):
tf = numpy.matlib.identity(2)
tf[0, 1] = dt
return tf, tf
class EKFTest(unittest.TestCase):
def test_update_scalar(self):
ekf = TestEKF(1e3, [0.1, 1])
dt = 1. / 100
sensor = SimpleSensor(0, 1, 2)
readings = map(sensor.read, np.arange(100, 300))
for reading in readings:
ekf.update_scalar(reading)
ekf.predict(dt)
np.testing.assert_allclose(ekf.state, [[300], [100]], 1e-4)
np.testing.assert_allclose(
ekf.covar,
np.asarray([[0.0563, 0.10278], [0.10278, 0.55779]]),
atol=1e-4)
def test_unbiased(self):
ekf = TestEKF(1e3, [0., 0.])
dt = np.float64(1. / 100)
sensor = SimpleSensor(0, 1, 2)
readings = map(sensor.read, np.arange(1000))
for reading in readings:
ekf.update_scalar(reading)
ekf.predict(dt)
np.testing.assert_allclose(ekf.state, [[1000.], [100.]], 1e-4)
class FastEKF1DTest(unittest.TestCase):
def test_correctness(self):
dt = 1. / 100
reading = SimpleSensor(0, 1, 2).read(100)
ekf = TestEKF(1e3, [0.1, 1])
fast_ekf = FastEKF1D(dt, 1e3, [0.1, 1])
ekf.update_scalar(reading)
fast_ekf.update_scalar(reading)
self.assertAlmostEqual(ekf.state[0] , fast_ekf.state[0])
self.assertAlmostEqual(ekf.state[1] , fast_ekf.state[1])
self.assertAlmostEqual(ekf.covar[0, 0], fast_ekf.covar[0])
self.assertAlmostEqual(ekf.covar[0, 1], fast_ekf.covar[2])
self.assertAlmostEqual(ekf.covar[1, 1], fast_ekf.covar[1])
ekf.predict(dt)
fast_ekf.predict(dt)
self.assertAlmostEqual(ekf.state[0] , fast_ekf.state[0])
self.assertAlmostEqual(ekf.state[1] , fast_ekf.state[1])
self.assertAlmostEqual(ekf.covar[0, 0], fast_ekf.covar[0])
self.assertAlmostEqual(ekf.covar[0, 1], fast_ekf.covar[2])
self.assertAlmostEqual(ekf.covar[1, 1], fast_ekf.covar[1])
def test_speed(self):
setup = """
import numpy as np
from common.kalman.tests.test_ekf import TestEKF
from common.kalman.ekf import SimpleSensor, FastEKF1D
dt = 1. / 100
reading = SimpleSensor(0, 1, 2).read(100)
var_init, Q = 1e3, [0.1, 1]
ekf = TestEKF(var_init, Q)
fast_ekf = FastEKF1D(dt, var_init, Q)
"""
timeit.timeit("""
ekf.update_scalar(reading)
ekf.predict(dt)
""", setup=setup, number=1000)
ekf_speed = timeit.timeit("""
ekf.update_scalar(reading)
ekf.predict(dt)
""", setup=setup, number=20000)
timeit.timeit("""
fast_ekf.update_scalar(reading)
fast_ekf.predict(dt)
""", setup=setup, number=1000)
fast_ekf_speed = timeit.timeit("""
fast_ekf.update_scalar(reading)
fast_ekf.predict(dt)
""", setup=setup, number=20000)
assert fast_ekf_speed < ekf_speed / 4
if __name__ == "__main__":
unittest.main()