You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							81 lines
						
					
					
						
							2.9 KiB
						
					
					
				
			
		
		
	
	
							81 lines
						
					
					
						
							2.9 KiB
						
					
					
				| #!/usr/bin/env python
 | |
| import sympy as sp
 | |
| import numpy as np
 | |
| 
 | |
| def cross(x):
 | |
|   ret = sp.Matrix(np.zeros((3,3)))
 | |
|   ret[0,1], ret[0,2] = -x[2], x[1]
 | |
|   ret[1,0], ret[1,2] = x[2], -x[0]
 | |
|   ret[2,0], ret[2,1] = -x[1], x[0]
 | |
|   return ret
 | |
| 
 | |
| def euler_rotate(roll, pitch, yaw):
 | |
|   # make symbolic rotation matrix from eulers
 | |
|   matrix_roll =  sp.Matrix([[1, 0, 0],
 | |
|                             [0, sp.cos(roll), -sp.sin(roll)],
 | |
|                             [0, sp.sin(roll), sp.cos(roll)]])
 | |
|   matrix_pitch =  sp.Matrix([[sp.cos(pitch), 0, sp.sin(pitch)],
 | |
|                              [0, 1, 0],
 | |
|                              [-sp.sin(pitch), 0, sp.cos(pitch)]])
 | |
|   matrix_yaw =  sp.Matrix([[sp.cos(yaw), -sp.sin(yaw), 0],
 | |
|                            [sp.sin(yaw), sp.cos(yaw), 0],
 | |
|                            [0, 0, 1]])
 | |
|   return matrix_yaw*matrix_pitch*matrix_roll
 | |
| 
 | |
| def quat_rotate(q0, q1, q2, q3):
 | |
|   # make symbolic rotation matrix from quat
 | |
|   return sp.Matrix([[q0**2 + q1**2 - q2**2 - q3**2, 2*(q1*q2 + q0*q3), 2*(q1*q3 - q0*q2)],
 | |
|                     [2*(q1*q2 - q0*q3), q0**2 - q1**2 + q2**2 - q3**2, 2*(q2*q3 + q0*q1)],
 | |
|                     [2*(q1*q3 + q0*q2), 2*(q2*q3 - q0*q1), q0**2 - q1**2 - q2**2 + q3**2]]).T
 | |
| 
 | |
| def quat_matrix_l(p):
 | |
|   return sp.Matrix([[p[0], -p[1], -p[2], -p[3]],
 | |
|                     [p[1],  p[0], -p[3],  p[2]],
 | |
|                     [p[2],  p[3],  p[0], -p[1]],
 | |
|                     [p[3], -p[2],  p[1],  p[0]]])
 | |
| 
 | |
| def quat_matrix_r(p):
 | |
|   return sp.Matrix([[p[0], -p[1], -p[2], -p[3]],
 | |
|                     [p[1],  p[0],  p[3], -p[2]],
 | |
|                     [p[2], -p[3],  p[0],  p[1]],
 | |
|                     [p[3],  p[2], -p[1],  p[0]]])
 | |
| 
 | |
| 
 | |
| def sympy_into_c(sympy_functions):
 | |
|   from sympy.utilities import codegen
 | |
|   routines = []
 | |
|   for name, expr, args in sympy_functions:
 | |
|     r = codegen.make_routine(name, expr, language="C99")
 | |
| 
 | |
|     # argument ordering input to sympy is broken with function with output arguments
 | |
|     nargs = []
 | |
|     # reorder the input arguments
 | |
|     for aa in args:
 | |
|       if aa is None:
 | |
|         nargs.append(codegen.InputArgument(sp.Symbol('unused'), dimensions=[1,1]))
 | |
|         continue
 | |
|       found = False
 | |
|       for a in r.arguments:
 | |
|         if str(aa.name) == str(a.name):
 | |
|           nargs.append(a)
 | |
|           found = True
 | |
|           break
 | |
|       if not found:
 | |
|         # [1,1] is a hack for Matrices
 | |
|         nargs.append(codegen.InputArgument(aa, dimensions=[1,1]))
 | |
|     # add the output arguments
 | |
|     for a in r.arguments:
 | |
|       if type(a) == codegen.OutputArgument:
 | |
|         nargs.append(a)
 | |
| 
 | |
|     #assert len(r.arguments) == len(args)+1
 | |
|     r.arguments = nargs
 | |
| 
 | |
|     # add routine to list
 | |
|     routines.append(r)
 | |
| 
 | |
|   [(c_name, c_code), (h_name, c_header)] = codegen.get_code_generator('C', 'ekf', 'C99').write(routines, "ekf")
 | |
|   c_code = '\n'.join(x for x in c_code.split("\n") if len(x) > 0 and x[0] != '#')
 | |
|   c_header = '\n'.join(x for x in  c_header.split("\n") if len(x) > 0 and x[0] != '#')
 | |
| 
 | |
|   return c_header, c_code
 | |
| 
 |