openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

462 lines
21 KiB

// Copyright (c) 2015 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef CAPNP_COMPAT_JSON_H_
#define CAPNP_COMPAT_JSON_H_
#include <capnp/schema.h>
#include <capnp/dynamic.h>
#include <capnp/compat/json.capnp.h>
namespace capnp {
class JsonCodec {
// Flexible class for encoding Cap'n Proto types as JSON, and decoding JSON back to Cap'n Proto.
//
// Typical usage:
//
// JsonCodec json;
//
// // encode
// kj::String encoded = json.encode(someStructReader);
//
// // decode
// json.decode(encoded, someStructBuilder);
//
// Advanced users can do fancy things like override the way certain types or fields are
// represented in JSON by registering handlers. See the unit test for an example.
//
// Notes:
// - When encoding, all primitive fields are always encoded, even if default-valued. Pointer
// fields are only encoded if they are non-null.
// - 64-bit integers are encoded as strings, since JSON "numbers" are double-precision floating
// points which cannot store a 64-bit integer without losing data.
// - NaNs and infinite floating point numbers are not allowed by the JSON spec, and so are encoded
// as null. This matches the behavior of `JSON.stringify` in at least Firefox and Chrome.
// - Data is encoded as an array of numbers in the range [0,255]. You probably want to register
// a handler that does something better, like maybe base64 encoding, but there are a zillion
// different ways people do this.
// - Encoding/decoding capabilities and AnyPointers requires registering a Handler, since there's
// no obvious default behavior.
// - When decoding, unrecognized field names are ignored. Note: This means that JSON is NOT a
// good format for receiving input from a human. Consider `capnp eval` or the SchemaParser
// library for human input.
public:
JsonCodec();
~JsonCodec() noexcept(false);
// ---------------------------------------------------------------------------
// standard API
void setPrettyPrint(bool enabled);
// Enable to insert newlines, indentation, and other extra spacing into the output. The default
// is to use minimal whitespace.
void setMaxNestingDepth(size_t maxNestingDepth);
// Set maximum nesting depth when decoding JSON to prevent highly nested input from overflowing
// the call stack. The default is 64.
template <typename T>
kj::String encode(T&& value);
// Encode any Cap'n Proto value to JSON, including primitives and
// Dynamic{Enum,Struct,List,Capability}, but not DynamicValue (see below).
kj::String encode(DynamicValue::Reader value, Type type) const;
// Encode a DynamicValue to JSON. `type` is needed because `DynamicValue` itself does
// not distinguish between e.g. int32 and int64, which in JSON are handled differently. Most
// of the time, though, you can use the single-argument templated version of `encode()` instead.
void decode(kj::ArrayPtr<const char> input, DynamicStruct::Builder output) const;
// Decode JSON text directly into a struct builder. This only works for structs since lists
// need to be allocated with the correct size in advance.
//
// (Remember that any Cap'n Proto struct reader type can be implicitly cast to
// DynamicStruct::Reader.)
template <typename T>
Orphan<T> decode(kj::ArrayPtr<const char> input, Orphanage orphanage) const;
// Decode JSON text to any Cap'n Proto object (pointer value), allocated using the given
// orphanage. T must be specified explicitly and cannot be dynamic, e.g.:
//
// Orphan<MyType> orphan = json.decode<MyType>(text, orphanage);
template <typename T>
ReaderFor<T> decode(kj::ArrayPtr<const char> input) const;
// Decode JSON text into a primitive or capability value. T must be specified explicitly and
// cannot be dynamic, e.g.:
//
// uint32_t n = json.decode<uint32_t>(text);
Orphan<DynamicValue> decode(kj::ArrayPtr<const char> input, Type type, Orphanage orphanage) const;
Orphan<DynamicList> decode(
kj::ArrayPtr<const char> input, ListSchema type, Orphanage orphanage) const;
Orphan<DynamicStruct> decode(
kj::ArrayPtr<const char> input, StructSchema type, Orphanage orphanage) const;
DynamicCapability::Client decode(kj::ArrayPtr<const char> input, InterfaceSchema type) const;
DynamicEnum decode(kj::ArrayPtr<const char> input, EnumSchema type) const;
// Decode to a dynamic value, specifying the type schema.
// ---------------------------------------------------------------------------
// layered API
//
// You can separate text <-> JsonValue from JsonValue <-> T. These are particularly useful
// for calling from Handler implementations.
kj::String encodeRaw(JsonValue::Reader value) const;
void decodeRaw(kj::ArrayPtr<const char> input, JsonValue::Builder output) const;
// Translate JsonValue <-> text.
template <typename T>
void encode(T&& value, JsonValue::Builder output);
void encode(DynamicValue::Reader input, Type type, JsonValue::Builder output) const;
void decode(JsonValue::Reader input, DynamicStruct::Builder output) const;
template <typename T>
Orphan<T> decode(JsonValue::Reader input, Orphanage orphanage) const;
template <typename T>
ReaderFor<T> decode(JsonValue::Reader input) const;
Orphan<DynamicValue> decode(JsonValue::Reader input, Type type, Orphanage orphanage) const;
Orphan<DynamicList> decode(JsonValue::Reader input, ListSchema type, Orphanage orphanage) const;
Orphan<DynamicStruct> decode(
JsonValue::Reader input, StructSchema type, Orphanage orphanage) const;
DynamicCapability::Client decode(JsonValue::Reader input, InterfaceSchema type) const;
DynamicEnum decode(JsonValue::Reader input, EnumSchema type) const;
// ---------------------------------------------------------------------------
// specializing particular types
template <typename T, Style s = style<T>()>
class Handler;
// Implement this interface to specify a special encoding for a particular type or field.
//
// The templates are a bit ugly, but subclasses of this type essentially implement two methods,
// one to encode values of this type and one to decode values of this type. `encode()` is simple:
//
// void encode(const JsonCodec& codec, ReaderFor<T> input, JsonValue::Builder output) const;
//
// `decode()` is a bit trickier. When T is a struct (including DynamicStruct), it is:
//
// void decode(const JsonCodec& codec, JsonValue::Reader input, BuilderFor<T> output) const;
//
// However, when T is a primitive, decode() is:
//
// T decode(const JsonCodec& codec, JsonValue::Reader input) const;
//
// Or when T is any non-struct object (list, blob), decode() is:
//
// Orphan<T> decode(const JsonCodec& codec, JsonValue::Reader input, Orphanage orphanage) const;
//
// Or when T is an interface:
//
// T::Client decode(const JsonCodec& codec, JsonValue::Reader input) const;
//
// Additionally, when T is a struct you can *optionally* also implement the orphan-returning form
// of decode(), but it will only be called when the struct would be allocated as an individual
// object, not as part of a list. This allows you to return "nullptr" in these cases to say that
// the pointer value should be null. This does not apply to list elements because struct list
// elements cannot ever be null (since Cap'n Proto encodes struct lists as a flat list rather
// than list-of-pointers).
template <typename T>
void addTypeHandler(Handler<T>& handler);
void addTypeHandler(Type type, Handler<DynamicValue>& handler);
void addTypeHandler(EnumSchema type, Handler<DynamicEnum>& handler);
void addTypeHandler(StructSchema type, Handler<DynamicStruct>& handler);
void addTypeHandler(ListSchema type, Handler<DynamicList>& handler);
void addTypeHandler(InterfaceSchema type, Handler<DynamicCapability>& handler);
// Arrange that whenever the type T appears in the message, your handler will be used to
// encode/decode it.
//
// Note that if you register a handler for a capability type, it will also apply to subtypes.
// Thus Handler<Capability> handles all capabilities.
template <typename T>
void addFieldHandler(StructSchema::Field field, Handler<T>& handler);
// Matches only the specific field. T can be a dynamic type. T must match the field's type.
private:
class HandlerBase;
struct Impl;
kj::Own<Impl> impl;
void encodeField(StructSchema::Field field, DynamicValue::Reader input,
JsonValue::Builder output) const;
void decodeArray(List<JsonValue>::Reader input, DynamicList::Builder output) const;
void decodeObject(List<JsonValue::Field>::Reader input, DynamicStruct::Builder output) const;
void addTypeHandlerImpl(Type type, HandlerBase& handler);
void addFieldHandlerImpl(StructSchema::Field field, Type type, HandlerBase& handler);
};
// =======================================================================================
// inline implementation details
template <typename T>
kj::String JsonCodec::encode(T&& value) {
typedef FromAny<kj::Decay<T>> Base;
return encode(DynamicValue::Reader(ReaderFor<Base>(kj::fwd<T>(value))), Type::from<Base>());
}
template <typename T>
inline Orphan<T> JsonCodec::decode(kj::ArrayPtr<const char> input, Orphanage orphanage) const {
return decode(input, Type::from<T>(), orphanage).template releaseAs<T>();
}
template <typename T>
inline ReaderFor<T> JsonCodec::decode(kj::ArrayPtr<const char> input) const {
static_assert(style<T>() == Style::PRIMITIVE || style<T>() == Style::CAPABILITY,
"must specify an orphanage to decode an object type");
return decode(input, Type::from<T>(), Orphanage()).getReader().template as<T>();
}
inline Orphan<DynamicList> JsonCodec::decode(
kj::ArrayPtr<const char> input, ListSchema type, Orphanage orphanage) const {
return decode(input, Type(type), orphanage).releaseAs<DynamicList>();
}
inline Orphan<DynamicStruct> JsonCodec::decode(
kj::ArrayPtr<const char> input, StructSchema type, Orphanage orphanage) const {
return decode(input, Type(type), orphanage).releaseAs<DynamicStruct>();
}
inline DynamicCapability::Client JsonCodec::decode(
kj::ArrayPtr<const char> input, InterfaceSchema type) const {
return decode(input, Type(type), Orphanage()).getReader().as<DynamicCapability>();
}
inline DynamicEnum JsonCodec::decode(kj::ArrayPtr<const char> input, EnumSchema type) const {
return decode(input, Type(type), Orphanage()).getReader().as<DynamicEnum>();
}
// -----------------------------------------------------------------------------
template <typename T>
void JsonCodec::encode(T&& value, JsonValue::Builder output) {
typedef FromAny<kj::Decay<T>> Base;
encode(DynamicValue::Reader(ReaderFor<Base>(kj::fwd<T>(value))), Type::from<Base>(), output);
}
template <typename T>
inline Orphan<T> JsonCodec::decode(JsonValue::Reader input, Orphanage orphanage) const {
return decode(input, Type::from<T>(), orphanage).template releaseAs<T>();
}
template <typename T>
inline ReaderFor<T> JsonCodec::decode(JsonValue::Reader input) const {
static_assert(style<T>() == Style::PRIMITIVE || style<T>() == Style::CAPABILITY,
"must specify an orphanage to decode an object type");
return decode(input, Type::from<T>(), Orphanage()).getReader().template as<T>();
}
inline Orphan<DynamicList> JsonCodec::decode(
JsonValue::Reader input, ListSchema type, Orphanage orphanage) const {
return decode(input, Type(type), orphanage).releaseAs<DynamicList>();
}
inline Orphan<DynamicStruct> JsonCodec::decode(
JsonValue::Reader input, StructSchema type, Orphanage orphanage) const {
return decode(input, Type(type), orphanage).releaseAs<DynamicStruct>();
}
inline DynamicCapability::Client JsonCodec::decode(
JsonValue::Reader input, InterfaceSchema type) const {
return decode(input, Type(type), Orphanage()).getReader().as<DynamicCapability>();
}
inline DynamicEnum JsonCodec::decode(JsonValue::Reader input, EnumSchema type) const {
return decode(input, Type(type), Orphanage()).getReader().as<DynamicEnum>();
}
// -----------------------------------------------------------------------------
class JsonCodec::HandlerBase {
// Internal helper; ignore.
public:
virtual void encodeBase(const JsonCodec& codec, DynamicValue::Reader input,
JsonValue::Builder output) const = 0;
virtual Orphan<DynamicValue> decodeBase(const JsonCodec& codec, JsonValue::Reader input,
Type type, Orphanage orphanage) const;
virtual void decodeStructBase(const JsonCodec& codec, JsonValue::Reader input,
DynamicStruct::Builder output) const;
};
template <typename T>
class JsonCodec::Handler<T, Style::POINTER>: private JsonCodec::HandlerBase {
public:
virtual void encode(const JsonCodec& codec, ReaderFor<T> input,
JsonValue::Builder output) const = 0;
virtual Orphan<T> decode(const JsonCodec& codec, JsonValue::Reader input,
Orphanage orphanage) const = 0;
private:
void encodeBase(const JsonCodec& codec, DynamicValue::Reader input,
JsonValue::Builder output) const override final {
encode(codec, input.as<T>(), output);
}
Orphan<DynamicValue> decodeBase(const JsonCodec& codec, JsonValue::Reader input,
Type type, Orphanage orphanage) const override final {
return decode(codec, input, orphanage);
}
friend class JsonCodec;
};
template <typename T>
class JsonCodec::Handler<T, Style::STRUCT>: private JsonCodec::HandlerBase {
public:
virtual void encode(const JsonCodec& codec, ReaderFor<T> input,
JsonValue::Builder output) const = 0;
virtual void decode(const JsonCodec& codec, JsonValue::Reader input,
BuilderFor<T> output) const = 0;
virtual Orphan<T> decode(const JsonCodec& codec, JsonValue::Reader input,
Orphanage orphanage) const {
// If subclass does not override, fall back to regular version.
auto result = orphanage.newOrphan<T>();
decode(codec, input, result.get());
return result;
}
private:
void encodeBase(const JsonCodec& codec, DynamicValue::Reader input,
JsonValue::Builder output) const override final {
encode(codec, input.as<T>(), output);
}
Orphan<DynamicValue> decodeBase(const JsonCodec& codec, JsonValue::Reader input,
Type type, Orphanage orphanage) const override final {
return decode(codec, input, orphanage);
}
void decodeStructBase(const JsonCodec& codec, JsonValue::Reader input,
DynamicStruct::Builder output) const override final {
decode(codec, input, output.as<T>());
}
friend class JsonCodec;
};
template <>
class JsonCodec::Handler<DynamicStruct>: private JsonCodec::HandlerBase {
// Almost identical to Style::STRUCT except that we pass the struct type to decode().
public:
virtual void encode(const JsonCodec& codec, DynamicStruct::Reader input,
JsonValue::Builder output) const = 0;
virtual void decode(const JsonCodec& codec, JsonValue::Reader input,
DynamicStruct::Builder output) const = 0;
virtual Orphan<DynamicStruct> decode(const JsonCodec& codec, JsonValue::Reader input,
StructSchema type, Orphanage orphanage) const {
// If subclass does not override, fall back to regular version.
auto result = orphanage.newOrphan(type);
decode(codec, input, result.get());
return result;
}
private:
void encodeBase(const JsonCodec& codec, DynamicValue::Reader input,
JsonValue::Builder output) const override final {
encode(codec, input.as<DynamicStruct>(), output);
}
Orphan<DynamicValue> decodeBase(const JsonCodec& codec, JsonValue::Reader input,
Type type, Orphanage orphanage) const override final {
return decode(codec, input, type.asStruct(), orphanage);
}
void decodeStructBase(const JsonCodec& codec, JsonValue::Reader input,
DynamicStruct::Builder output) const override final {
decode(codec, input, output.as<DynamicStruct>());
}
friend class JsonCodec;
};
template <typename T>
class JsonCodec::Handler<T, Style::PRIMITIVE>: private JsonCodec::HandlerBase {
public:
virtual void encode(const JsonCodec& codec, T input, JsonValue::Builder output) const = 0;
virtual T decode(const JsonCodec& codec, JsonValue::Reader input) const = 0;
private:
void encodeBase(const JsonCodec& codec, DynamicValue::Reader input,
JsonValue::Builder output) const override final {
encode(codec, input.as<T>(), output);
}
Orphan<DynamicValue> decodeBase(const JsonCodec& codec, JsonValue::Reader input,
Type type, Orphanage orphanage) const override final {
return decode(codec, input);
}
friend class JsonCodec;
};
template <typename T>
class JsonCodec::Handler<T, Style::CAPABILITY>: private JsonCodec::HandlerBase {
public:
virtual void encode(const JsonCodec& codec, typename T::Client input,
JsonValue::Builder output) const = 0;
virtual typename T::Client decode(const JsonCodec& codec, JsonValue::Reader input) const = 0;
private:
void encodeBase(const JsonCodec& codec, DynamicValue::Reader input,
JsonValue::Builder output) const override final {
encode(codec, input.as<T>(), output);
}
Orphan<DynamicValue> decodeBase(const JsonCodec& codec, JsonValue::Reader input,
Type type, Orphanage orphanage) const override final {
return orphanage.newOrphanCopy(decode(codec, input));
}
friend class JsonCodec;
};
template <typename T>
inline void JsonCodec::addTypeHandler(Handler<T>& handler) {
addTypeHandlerImpl(Type::from<T>(), handler);
}
inline void JsonCodec::addTypeHandler(Type type, Handler<DynamicValue>& handler) {
addTypeHandlerImpl(type, handler);
}
inline void JsonCodec::addTypeHandler(EnumSchema type, Handler<DynamicEnum>& handler) {
addTypeHandlerImpl(type, handler);
}
inline void JsonCodec::addTypeHandler(StructSchema type, Handler<DynamicStruct>& handler) {
addTypeHandlerImpl(type, handler);
}
inline void JsonCodec::addTypeHandler(ListSchema type, Handler<DynamicList>& handler) {
addTypeHandlerImpl(type, handler);
}
inline void JsonCodec::addTypeHandler(InterfaceSchema type, Handler<DynamicCapability>& handler) {
addTypeHandlerImpl(type, handler);
}
template <typename T>
inline void JsonCodec::addFieldHandler(StructSchema::Field field, Handler<T>& handler) {
addFieldHandlerImpl(field, Type::from<T>(), handler);
}
template <> void JsonCodec::addTypeHandler(Handler<DynamicValue>& handler)
KJ_UNAVAILABLE("JSON handlers for type sets (e.g. all structs, all lists) not implemented; "
"try specifying a specific type schema as the first parameter");
template <> void JsonCodec::addTypeHandler(Handler<DynamicEnum>& handler)
KJ_UNAVAILABLE("JSON handlers for type sets (e.g. all structs, all lists) not implemented; "
"try specifying a specific type schema as the first parameter");
template <> void JsonCodec::addTypeHandler(Handler<DynamicStruct>& handler)
KJ_UNAVAILABLE("JSON handlers for type sets (e.g. all structs, all lists) not implemented; "
"try specifying a specific type schema as the first parameter");
template <> void JsonCodec::addTypeHandler(Handler<DynamicList>& handler)
KJ_UNAVAILABLE("JSON handlers for type sets (e.g. all structs, all lists) not implemented; "
"try specifying a specific type schema as the first parameter");
template <> void JsonCodec::addTypeHandler(Handler<DynamicCapability>& handler)
KJ_UNAVAILABLE("JSON handlers for type sets (e.g. all structs, all lists) not implemented; "
"try specifying a specific type schema as the first parameter");
// TODO(someday): Implement support for registering handlers that cover thinsg like "all structs"
// or "all lists". Currently you can only target a specific struct or list type.
} // namespace capnp
#endif // CAPNP_COMPAT_JSON_H_