openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

546 lines
20 KiB

// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef CAPNP_LIST_H_
#define CAPNP_LIST_H_
#if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS)
#pragma GCC system_header
#endif
#include "layout.h"
#include "orphan.h"
#include <initializer_list>
#ifdef KJ_STD_COMPAT
#include <iterator>
#endif // KJ_STD_COMPAT
namespace capnp {
namespace _ { // private
template <typename T>
class TemporaryPointer {
// This class is a little hack which lets us define operator->() in cases where it needs to
// return a pointer to a temporary value. We instead construct a TemporaryPointer and return that
// (by value). The compiler then invokes operator->() on the TemporaryPointer, which itself is
// able to return a real pointer to its member.
public:
TemporaryPointer(T&& value): value(kj::mv(value)) {}
TemporaryPointer(const T& value): value(value) {}
inline T* operator->() { return &value; }
private:
T value;
};
template <typename Container, typename Element>
class IndexingIterator {
public:
IndexingIterator() = default;
inline Element operator*() const { return (*container)[index]; }
inline TemporaryPointer<Element> operator->() const {
return TemporaryPointer<Element>((*container)[index]);
}
inline Element operator[]( int off) const { return (*container)[index]; }
inline Element operator[](uint off) const { return (*container)[index]; }
inline IndexingIterator& operator++() { ++index; return *this; }
inline IndexingIterator operator++(int) { IndexingIterator other = *this; ++index; return other; }
inline IndexingIterator& operator--() { --index; return *this; }
inline IndexingIterator operator--(int) { IndexingIterator other = *this; --index; return other; }
inline IndexingIterator operator+(uint amount) const { return IndexingIterator(container, index + amount); }
inline IndexingIterator operator-(uint amount) const { return IndexingIterator(container, index - amount); }
inline IndexingIterator operator+( int amount) const { return IndexingIterator(container, index + amount); }
inline IndexingIterator operator-( int amount) const { return IndexingIterator(container, index - amount); }
inline int operator-(const IndexingIterator& other) const { return index - other.index; }
inline IndexingIterator& operator+=(uint amount) { index += amount; return *this; }
inline IndexingIterator& operator-=(uint amount) { index -= amount; return *this; }
inline IndexingIterator& operator+=( int amount) { index += amount; return *this; }
inline IndexingIterator& operator-=( int amount) { index -= amount; return *this; }
// STL says comparing iterators of different containers is not allowed, so we only compare
// indices here.
inline bool operator==(const IndexingIterator& other) const { return index == other.index; }
inline bool operator!=(const IndexingIterator& other) const { return index != other.index; }
inline bool operator<=(const IndexingIterator& other) const { return index <= other.index; }
inline bool operator>=(const IndexingIterator& other) const { return index >= other.index; }
inline bool operator< (const IndexingIterator& other) const { return index < other.index; }
inline bool operator> (const IndexingIterator& other) const { return index > other.index; }
private:
Container* container;
uint index;
friend Container;
inline IndexingIterator(Container* container, uint index)
: container(container), index(index) {}
};
} // namespace _ (private)
template <typename T>
struct List<T, Kind::PRIMITIVE> {
// List of primitives.
List() = delete;
class Reader {
public:
typedef List<T> Reads;
inline Reader(): reader(_::elementSizeForType<T>()) {}
inline explicit Reader(_::ListReader reader): reader(reader) {}
inline uint size() const { return unbound(reader.size() / ELEMENTS); }
inline T operator[](uint index) const {
KJ_IREQUIRE(index < size());
return reader.template getDataElement<T>(bounded(index) * ELEMENTS);
}
typedef _::IndexingIterator<const Reader, T> Iterator;
inline Iterator begin() const { return Iterator(this, 0); }
inline Iterator end() const { return Iterator(this, size()); }
private:
_::ListReader reader;
template <typename U, Kind K>
friend struct _::PointerHelpers;
template <typename U, Kind K>
friend struct List;
friend class Orphanage;
template <typename U, Kind K>
friend struct ToDynamic_;
};
class Builder {
public:
typedef List<T> Builds;
inline Builder(): builder(_::elementSizeForType<T>()) {}
inline Builder(decltype(nullptr)): Builder() {}
inline explicit Builder(_::ListBuilder builder): builder(builder) {}
inline operator Reader() const { return Reader(builder.asReader()); }
inline Reader asReader() const { return Reader(builder.asReader()); }
inline uint size() const { return unbound(builder.size() / ELEMENTS); }
inline T operator[](uint index) {
KJ_IREQUIRE(index < size());
return builder.template getDataElement<T>(bounded(index) * ELEMENTS);
}
inline void set(uint index, T value) {
// Alas, it is not possible to make operator[] return a reference to which you can assign,
// since the encoded representation does not necessarily match the compiler's representation
// of the type. We can't even return a clever class that implements operator T() and
// operator=() because it will lead to surprising behavior when using type inference (e.g.
// calling a template function with inferred argument types, or using "auto" or "decltype").
builder.template setDataElement<T>(bounded(index) * ELEMENTS, value);
}
typedef _::IndexingIterator<Builder, T> Iterator;
inline Iterator begin() { return Iterator(this, 0); }
inline Iterator end() { return Iterator(this, size()); }
private:
_::ListBuilder builder;
template <typename U, Kind K>
friend struct _::PointerHelpers;
friend class Orphanage;
template <typename U, Kind K>
friend struct ToDynamic_;
};
class Pipeline {};
private:
inline static _::ListBuilder initPointer(_::PointerBuilder builder, uint size) {
return builder.initList(_::elementSizeForType<T>(), bounded(size) * ELEMENTS);
}
inline static _::ListBuilder getFromPointer(_::PointerBuilder builder, const word* defaultValue) {
return builder.getList(_::elementSizeForType<T>(), defaultValue);
}
inline static _::ListReader getFromPointer(
const _::PointerReader& reader, const word* defaultValue) {
return reader.getList(_::elementSizeForType<T>(), defaultValue);
}
template <typename U, Kind k>
friend struct List;
template <typename U, Kind K>
friend struct _::PointerHelpers;
};
template <typename T>
struct List<T, Kind::ENUM>: public List<T, Kind::PRIMITIVE> {};
template <typename T>
struct List<T, Kind::STRUCT> {
// List of structs.
List() = delete;
class Reader {
public:
typedef List<T> Reads;
inline Reader(): reader(ElementSize::INLINE_COMPOSITE) {}
inline explicit Reader(_::ListReader reader): reader(reader) {}
inline uint size() const { return unbound(reader.size() / ELEMENTS); }
inline typename T::Reader operator[](uint index) const {
KJ_IREQUIRE(index < size());
return typename T::Reader(reader.getStructElement(bounded(index) * ELEMENTS));
}
typedef _::IndexingIterator<const Reader, typename T::Reader> Iterator;
inline Iterator begin() const { return Iterator(this, 0); }
inline Iterator end() const { return Iterator(this, size()); }
private:
_::ListReader reader;
template <typename U, Kind K>
friend struct _::PointerHelpers;
template <typename U, Kind K>
friend struct List;
friend class Orphanage;
template <typename U, Kind K>
friend struct ToDynamic_;
};
class Builder {
public:
typedef List<T> Builds;
inline Builder(): builder(ElementSize::INLINE_COMPOSITE) {}
inline Builder(decltype(nullptr)): Builder() {}
inline explicit Builder(_::ListBuilder builder): builder(builder) {}
inline operator Reader() const { return Reader(builder.asReader()); }
inline Reader asReader() const { return Reader(builder.asReader()); }
inline uint size() const { return unbound(builder.size() / ELEMENTS); }
inline typename T::Builder operator[](uint index) {
KJ_IREQUIRE(index < size());
return typename T::Builder(builder.getStructElement(bounded(index) * ELEMENTS));
}
inline void adoptWithCaveats(uint index, Orphan<T>&& orphan) {
// Mostly behaves like you'd expect `adopt` to behave, but with two caveats originating from
// the fact that structs in a struct list are allocated inline rather than by pointer:
// * This actually performs a shallow copy, effectively adopting each of the orphan's
// children rather than adopting the orphan itself. The orphan ends up being discarded,
// possibly wasting space in the message object.
// * If the orphan is larger than the target struct -- say, because the orphan was built
// using a newer version of the schema that has additional fields -- it will be truncated,
// losing data.
KJ_IREQUIRE(index < size());
// We pass a zero-valued StructSize to asStruct() because we do not want the struct to be
// expanded under any circumstances. We're just going to throw it away anyway, and
// transferContentFrom() already carefully compares the struct sizes before transferring.
builder.getStructElement(bounded(index) * ELEMENTS).transferContentFrom(
orphan.builder.asStruct(_::StructSize(ZERO * WORDS, ZERO * POINTERS)));
}
inline void setWithCaveats(uint index, const typename T::Reader& reader) {
// Mostly behaves like you'd expect `set` to behave, but with a caveat originating from
// the fact that structs in a struct list are allocated inline rather than by pointer:
// If the source struct is larger than the target struct -- say, because the source was built
// using a newer version of the schema that has additional fields -- it will be truncated,
// losing data.
//
// Note: If you are trying to concatenate some lists, use Orphanage::newOrphanConcat() to
// do it without losing any data in case the source lists come from a newer version of the
// protocol. (Plus, it's easier to use anyhow.)
KJ_IREQUIRE(index < size());
builder.getStructElement(bounded(index) * ELEMENTS).copyContentFrom(reader._reader);
}
// There are no init(), set(), adopt(), or disown() methods for lists of structs because the
// elements of the list are inlined and are initialized when the list is initialized. This
// means that init() would be redundant, and set() would risk data loss if the input struct
// were from a newer version of the protocol.
typedef _::IndexingIterator<Builder, typename T::Builder> Iterator;
inline Iterator begin() { return Iterator(this, 0); }
inline Iterator end() { return Iterator(this, size()); }
private:
_::ListBuilder builder;
template <typename U, Kind K>
friend struct _::PointerHelpers;
friend class Orphanage;
template <typename U, Kind K>
friend struct ToDynamic_;
};
class Pipeline {};
private:
inline static _::ListBuilder initPointer(_::PointerBuilder builder, uint size) {
return builder.initStructList(bounded(size) * ELEMENTS, _::structSize<T>());
}
inline static _::ListBuilder getFromPointer(_::PointerBuilder builder, const word* defaultValue) {
return builder.getStructList(_::structSize<T>(), defaultValue);
}
inline static _::ListReader getFromPointer(
const _::PointerReader& reader, const word* defaultValue) {
return reader.getList(ElementSize::INLINE_COMPOSITE, defaultValue);
}
template <typename U, Kind k>
friend struct List;
template <typename U, Kind K>
friend struct _::PointerHelpers;
};
template <typename T>
struct List<List<T>, Kind::LIST> {
// List of lists.
List() = delete;
class Reader {
public:
typedef List<List<T>> Reads;
inline Reader(): reader(ElementSize::POINTER) {}
inline explicit Reader(_::ListReader reader): reader(reader) {}
inline uint size() const { return unbound(reader.size() / ELEMENTS); }
inline typename List<T>::Reader operator[](uint index) const {
KJ_IREQUIRE(index < size());
return typename List<T>::Reader(_::PointerHelpers<List<T>>::get(
reader.getPointerElement(bounded(index) * ELEMENTS)));
}
typedef _::IndexingIterator<const Reader, typename List<T>::Reader> Iterator;
inline Iterator begin() const { return Iterator(this, 0); }
inline Iterator end() const { return Iterator(this, size()); }
private:
_::ListReader reader;
template <typename U, Kind K>
friend struct _::PointerHelpers;
template <typename U, Kind K>
friend struct List;
friend class Orphanage;
template <typename U, Kind K>
friend struct ToDynamic_;
};
class Builder {
public:
typedef List<List<T>> Builds;
inline Builder(): builder(ElementSize::POINTER) {}
inline Builder(decltype(nullptr)): Builder() {}
inline explicit Builder(_::ListBuilder builder): builder(builder) {}
inline operator Reader() const { return Reader(builder.asReader()); }
inline Reader asReader() const { return Reader(builder.asReader()); }
inline uint size() const { return unbound(builder.size() / ELEMENTS); }
inline typename List<T>::Builder operator[](uint index) {
KJ_IREQUIRE(index < size());
return typename List<T>::Builder(_::PointerHelpers<List<T>>::get(
builder.getPointerElement(bounded(index) * ELEMENTS)));
}
inline typename List<T>::Builder init(uint index, uint size) {
KJ_IREQUIRE(index < this->size());
return typename List<T>::Builder(_::PointerHelpers<List<T>>::init(
builder.getPointerElement(bounded(index) * ELEMENTS), size));
}
inline void set(uint index, typename List<T>::Reader value) {
KJ_IREQUIRE(index < size());
builder.getPointerElement(bounded(index) * ELEMENTS).setList(value.reader);
}
void set(uint index, std::initializer_list<ReaderFor<T>> value) {
KJ_IREQUIRE(index < size());
auto l = init(index, value.size());
uint i = 0;
for (auto& element: value) {
l.set(i++, element);
}
}
inline void adopt(uint index, Orphan<T>&& value) {
KJ_IREQUIRE(index < size());
builder.getPointerElement(bounded(index) * ELEMENTS).adopt(kj::mv(value.builder));
}
inline Orphan<T> disown(uint index) {
KJ_IREQUIRE(index < size());
return Orphan<T>(builder.getPointerElement(bounded(index) * ELEMENTS).disown());
}
typedef _::IndexingIterator<Builder, typename List<T>::Builder> Iterator;
inline Iterator begin() { return Iterator(this, 0); }
inline Iterator end() { return Iterator(this, size()); }
private:
_::ListBuilder builder;
template <typename U, Kind K>
friend struct _::PointerHelpers;
friend class Orphanage;
template <typename U, Kind K>
friend struct ToDynamic_;
};
class Pipeline {};
private:
inline static _::ListBuilder initPointer(_::PointerBuilder builder, uint size) {
return builder.initList(ElementSize::POINTER, bounded(size) * ELEMENTS);
}
inline static _::ListBuilder getFromPointer(_::PointerBuilder builder, const word* defaultValue) {
return builder.getList(ElementSize::POINTER, defaultValue);
}
inline static _::ListReader getFromPointer(
const _::PointerReader& reader, const word* defaultValue) {
return reader.getList(ElementSize::POINTER, defaultValue);
}
template <typename U, Kind k>
friend struct List;
template <typename U, Kind K>
friend struct _::PointerHelpers;
};
template <typename T>
struct List<T, Kind::BLOB> {
List() = delete;
class Reader {
public:
typedef List<T> Reads;
inline Reader(): reader(ElementSize::POINTER) {}
inline explicit Reader(_::ListReader reader): reader(reader) {}
inline uint size() const { return unbound(reader.size() / ELEMENTS); }
inline typename T::Reader operator[](uint index) const {
KJ_IREQUIRE(index < size());
return reader.getPointerElement(bounded(index) * ELEMENTS)
.template getBlob<T>(nullptr, ZERO * BYTES);
}
typedef _::IndexingIterator<const Reader, typename T::Reader> Iterator;
inline Iterator begin() const { return Iterator(this, 0); }
inline Iterator end() const { return Iterator(this, size()); }
private:
_::ListReader reader;
template <typename U, Kind K>
friend struct _::PointerHelpers;
template <typename U, Kind K>
friend struct List;
friend class Orphanage;
template <typename U, Kind K>
friend struct ToDynamic_;
};
class Builder {
public:
typedef List<T> Builds;
inline Builder(): builder(ElementSize::POINTER) {}
inline Builder(decltype(nullptr)): Builder() {}
inline explicit Builder(_::ListBuilder builder): builder(builder) {}
inline operator Reader() const { return Reader(builder.asReader()); }
inline Reader asReader() const { return Reader(builder.asReader()); }
inline uint size() const { return unbound(builder.size() / ELEMENTS); }
inline typename T::Builder operator[](uint index) {
KJ_IREQUIRE(index < size());
return builder.getPointerElement(bounded(index) * ELEMENTS)
.template getBlob<T>(nullptr, ZERO * BYTES);
}
inline void set(uint index, typename T::Reader value) {
KJ_IREQUIRE(index < size());
builder.getPointerElement(bounded(index) * ELEMENTS).template setBlob<T>(value);
}
inline typename T::Builder init(uint index, uint size) {
KJ_IREQUIRE(index < this->size());
return builder.getPointerElement(bounded(index) * ELEMENTS)
.template initBlob<T>(bounded(size) * BYTES);
}
inline void adopt(uint index, Orphan<T>&& value) {
KJ_IREQUIRE(index < size());
builder.getPointerElement(bounded(index) * ELEMENTS).adopt(kj::mv(value.builder));
}
inline Orphan<T> disown(uint index) {
KJ_IREQUIRE(index < size());
return Orphan<T>(builder.getPointerElement(bounded(index) * ELEMENTS).disown());
}
typedef _::IndexingIterator<Builder, typename T::Builder> Iterator;
inline Iterator begin() { return Iterator(this, 0); }
inline Iterator end() { return Iterator(this, size()); }
private:
_::ListBuilder builder;
template <typename U, Kind K>
friend struct _::PointerHelpers;
friend class Orphanage;
template <typename U, Kind K>
friend struct ToDynamic_;
};
class Pipeline {};
private:
inline static _::ListBuilder initPointer(_::PointerBuilder builder, uint size) {
return builder.initList(ElementSize::POINTER, bounded(size) * ELEMENTS);
}
inline static _::ListBuilder getFromPointer(_::PointerBuilder builder, const word* defaultValue) {
return builder.getList(ElementSize::POINTER, defaultValue);
}
inline static _::ListReader getFromPointer(
const _::PointerReader& reader, const word* defaultValue) {
return reader.getList(ElementSize::POINTER, defaultValue);
}
template <typename U, Kind k>
friend struct List;
template <typename U, Kind K>
friend struct _::PointerHelpers;
};
} // namespace capnp
#ifdef KJ_STD_COMPAT
namespace std {
template <typename Container, typename Element>
struct iterator_traits<capnp::_::IndexingIterator<Container, Element>>
: public std::iterator<std::random_access_iterator_tag, Element, int> {};
} // namespace std
#endif // KJ_STD_COMPAT
#endif // CAPNP_LIST_H_