openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

934 lines
35 KiB

// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef CAPNP_SCHEMA_H_
#define CAPNP_SCHEMA_H_
#if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS)
#pragma GCC system_header
#endif
#if CAPNP_LITE
#error "Reflection APIs, including this header, are not available in lite mode."
#endif
#include <capnp/schema.capnp.h>
namespace capnp {
class Schema;
class StructSchema;
class EnumSchema;
class InterfaceSchema;
class ConstSchema;
class ListSchema;
class Type;
template <typename T, Kind k = kind<T>()> struct SchemaType_ { typedef Schema Type; };
template <typename T> struct SchemaType_<T, Kind::PRIMITIVE> { typedef schema::Type::Which Type; };
template <typename T> struct SchemaType_<T, Kind::BLOB> { typedef schema::Type::Which Type; };
template <typename T> struct SchemaType_<T, Kind::ENUM> { typedef EnumSchema Type; };
template <typename T> struct SchemaType_<T, Kind::STRUCT> { typedef StructSchema Type; };
template <typename T> struct SchemaType_<T, Kind::INTERFACE> { typedef InterfaceSchema Type; };
template <typename T> struct SchemaType_<T, Kind::LIST> { typedef ListSchema Type; };
template <typename T>
using SchemaType = typename SchemaType_<T>::Type;
// SchemaType<T> is the type of T's schema, e.g. StructSchema if T is a struct.
namespace _ { // private
extern const RawSchema NULL_SCHEMA;
extern const RawSchema NULL_STRUCT_SCHEMA;
extern const RawSchema NULL_ENUM_SCHEMA;
extern const RawSchema NULL_INTERFACE_SCHEMA;
extern const RawSchema NULL_CONST_SCHEMA;
// The schema types default to these null (empty) schemas in case of error, especially when
// exceptions are disabled.
} // namespace _ (private)
class Schema {
// Convenience wrapper around capnp::schema::Node.
public:
inline Schema(): raw(&_::NULL_SCHEMA.defaultBrand) {}
template <typename T>
static inline SchemaType<T> from() { return SchemaType<T>::template fromImpl<T>(); }
// Get the Schema for a particular compiled-in type.
schema::Node::Reader getProto() const;
// Get the underlying Cap'n Proto representation of the schema node. (Note that this accessor
// has performance comparable to accessors of struct-typed fields on Reader classes.)
kj::ArrayPtr<const word> asUncheckedMessage() const;
// Get the encoded schema node content as a single message segment. It is safe to read as an
// unchecked message.
Schema getDependency(uint64_t id) const KJ_DEPRECATED("Does not handle generics correctly.");
// DEPRECATED: This method cannot correctly account for generic type parameter bindings that
// may apply to the dependency. Instead of using this method, use a method of the Schema API
// that corresponds to the exact kind of dependency. For example, to get a field type, use
// StructSchema::Field::getType().
//
// Gets the Schema for one of this Schema's dependencies. For example, if this Schema is for a
// struct, you could look up the schema for one of its fields' types. Throws an exception if this
// schema doesn't actually depend on the given id.
//
// Note that not all type IDs found in the schema node are considered "dependencies" -- only the
// ones that are needed to implement the dynamic API are. That includes:
// - Field types.
// - Group types.
// - scopeId for group nodes, but NOT otherwise.
// - Method parameter and return types.
//
// The following are NOT considered dependencies:
// - Nested nodes.
// - scopeId for a non-group node.
// - Annotations.
//
// To obtain schemas for those, you would need a SchemaLoader.
bool isBranded() const;
// Returns true if this schema represents a non-default parameterization of this type.
Schema getGeneric() const;
// Get the version of this schema with any brands removed.
class BrandArgumentList;
BrandArgumentList getBrandArgumentsAtScope(uint64_t scopeId) const;
// Gets the values bound to the brand parameters at the given scope.
StructSchema asStruct() const;
EnumSchema asEnum() const;
InterfaceSchema asInterface() const;
ConstSchema asConst() const;
// Cast the Schema to a specific type. Throws an exception if the type doesn't match. Use
// getProto() to determine type, e.g. getProto().isStruct().
inline bool operator==(const Schema& other) const { return raw == other.raw; }
inline bool operator!=(const Schema& other) const { return raw != other.raw; }
// Determine whether two Schemas are wrapping the exact same underlying data, by identity. If
// you want to check if two Schemas represent the same type (but possibly different versions of
// it), compare their IDs instead.
template <typename T>
void requireUsableAs() const;
// Throws an exception if a value with this Schema cannot safely be cast to a native value of
// the given type. This passes if either:
// - *this == from<T>()
// - This schema was loaded with SchemaLoader, the type ID matches typeId<T>(), and
// loadCompiledTypeAndDependencies<T>() was called on the SchemaLoader.
kj::StringPtr getShortDisplayName() const;
// Get the short version of the node's display name.
private:
const _::RawBrandedSchema* raw;
inline explicit Schema(const _::RawBrandedSchema* raw): raw(raw) {
KJ_IREQUIRE(raw->lazyInitializer == nullptr,
"Must call ensureInitialized() on RawSchema before constructing Schema.");
}
template <typename T> static inline Schema fromImpl() {
return Schema(&_::rawSchema<T>());
}
void requireUsableAs(const _::RawSchema* expected) const;
uint32_t getSchemaOffset(const schema::Value::Reader& value) const;
Type getBrandBinding(uint64_t scopeId, uint index) const;
// Look up the binding for a brand parameter used by this Schema. Returns `AnyPointer` if the
// parameter is not bound.
//
// TODO(someday): Public interface for iterating over all bindings?
Schema getDependency(uint64_t id, uint location) const;
// Look up schema for a particular dependency of this schema. `location` is the dependency
// location number as defined in _::RawBrandedSchema.
Type interpretType(schema::Type::Reader proto, uint location) const;
// Interpret a schema::Type in the given location within the schema, compiling it into a
// Type object.
friend class StructSchema;
friend class EnumSchema;
friend class InterfaceSchema;
friend class ConstSchema;
friend class ListSchema;
friend class SchemaLoader;
friend class Type;
friend kj::StringTree _::structString(
_::StructReader reader, const _::RawBrandedSchema& schema);
friend kj::String _::enumString(uint16_t value, const _::RawBrandedSchema& schema);
};
kj::StringPtr KJ_STRINGIFY(const Schema& schema);
class Schema::BrandArgumentList {
// A list of generic parameter bindings for parameters of some particular type. Note that since
// parameters on an outer type apply to all inner types as well, a deeply-nested type can have
// multiple BrandArgumentLists that apply to it.
//
// A BrandArgumentList only represents the arguments that the client of the type specified. Since
// new parameters can be added over time, this list may not cover all defined parameters for the
// type. Missing parameters should be treated as AnyPointer. This class's implementation of
// operator[] already does this for you; out-of-bounds access will safely return AnyPointer.
public:
inline BrandArgumentList(): scopeId(0), size_(0), bindings(nullptr) {}
inline uint size() const { return size_; }
Type operator[](uint index) const;
typedef _::IndexingIterator<const BrandArgumentList, Type> Iterator;
inline Iterator begin() const { return Iterator(this, 0); }
inline Iterator end() const { return Iterator(this, size()); }
private:
uint64_t scopeId;
uint size_;
bool isUnbound;
const _::RawBrandedSchema::Binding* bindings;
inline BrandArgumentList(uint64_t scopeId, bool isUnbound)
: scopeId(scopeId), size_(0), isUnbound(isUnbound), bindings(nullptr) {}
inline BrandArgumentList(uint64_t scopeId, uint size,
const _::RawBrandedSchema::Binding* bindings)
: scopeId(scopeId), size_(size), isUnbound(false), bindings(bindings) {}
friend class Schema;
};
// -------------------------------------------------------------------
class StructSchema: public Schema {
public:
inline StructSchema(): Schema(&_::NULL_STRUCT_SCHEMA.defaultBrand) {}
class Field;
class FieldList;
class FieldSubset;
FieldList getFields() const;
// List top-level fields of this struct. This list will contain top-level groups (including
// named unions) but not the members of those groups. The list does, however, contain the
// members of the unnamed union, if there is one.
FieldSubset getUnionFields() const;
// If the field contains an unnamed union, get a list of fields in the union, ordered by
// ordinal. Since discriminant values are assigned sequentially by ordinal, you may index this
// list by discriminant value.
FieldSubset getNonUnionFields() const;
// Get the fields of this struct which are not in an unnamed union, ordered by ordinal.
kj::Maybe<Field> findFieldByName(kj::StringPtr name) const;
// Find the field with the given name, or return null if there is no such field. If the struct
// contains an unnamed union, then this will find fields of that union in addition to fields
// of the outer struct, since they exist in the same namespace. It will not, however, find
// members of groups (including named unions) -- you must first look up the group itself,
// then dig into its type.
Field getFieldByName(kj::StringPtr name) const;
// Like findFieldByName() but throws an exception on failure.
kj::Maybe<Field> getFieldByDiscriminant(uint16_t discriminant) const;
// Finds the field whose `discriminantValue` is equal to the given value, or returns null if
// there is no such field. (If the schema does not represent a union or a struct containing
// an unnamed union, then this always returns null.)
private:
StructSchema(Schema base): Schema(base) {}
template <typename T> static inline StructSchema fromImpl() {
return StructSchema(Schema(&_::rawBrandedSchema<T>()));
}
friend class Schema;
friend class Type;
};
class StructSchema::Field {
public:
Field() = default;
inline schema::Field::Reader getProto() const { return proto; }
inline StructSchema getContainingStruct() const { return parent; }
inline uint getIndex() const { return index; }
// Get the index of this field within the containing struct or union.
Type getType() const;
// Get the type of this field. Note that this is preferred over getProto().getType() as this
// method will apply generics.
uint32_t getDefaultValueSchemaOffset() const;
// For struct, list, and object fields, returns the offset, in words, within the first segment of
// the struct's schema, where this field's default value pointer is located. The schema is
// always stored as a single-segment unchecked message, which in turn means that the default
// value pointer itself can be treated as the root of an unchecked message -- if you know where
// to find it, which is what this method helps you with.
//
// For blobs, returns the offset of the beginning of the blob's content within the first segment
// of the struct's schema.
//
// This is primarily useful for code generators. The C++ code generator, for example, embeds
// the entire schema as a raw word array within the generated code. Of course, to implement
// field accessors, it needs access to those fields' default values. Embedding separate copies
// of those default values would be redundant since they are already included in the schema, but
// seeking through the schema at runtime to find the default values would be ugly. Instead,
// the code generator can use getDefaultValueSchemaOffset() to find the offset of the default
// value within the schema, and can simply apply that offset at runtime.
//
// If the above does not make sense, you probably don't need this method.
inline bool operator==(const Field& other) const;
inline bool operator!=(const Field& other) const { return !(*this == other); }
private:
StructSchema parent;
uint index;
schema::Field::Reader proto;
inline Field(StructSchema parent, uint index, schema::Field::Reader proto)
: parent(parent), index(index), proto(proto) {}
friend class StructSchema;
};
kj::StringPtr KJ_STRINGIFY(const StructSchema::Field& field);
class StructSchema::FieldList {
public:
FieldList() = default; // empty list
inline uint size() const { return list.size(); }
inline Field operator[](uint index) const { return Field(parent, index, list[index]); }
typedef _::IndexingIterator<const FieldList, Field> Iterator;
inline Iterator begin() const { return Iterator(this, 0); }
inline Iterator end() const { return Iterator(this, size()); }
private:
StructSchema parent;
List<schema::Field>::Reader list;
inline FieldList(StructSchema parent, List<schema::Field>::Reader list)
: parent(parent), list(list) {}
friend class StructSchema;
};
class StructSchema::FieldSubset {
public:
FieldSubset() = default; // empty list
inline uint size() const { return size_; }
inline Field operator[](uint index) const {
return Field(parent, indices[index], list[indices[index]]);
}
typedef _::IndexingIterator<const FieldSubset, Field> Iterator;
inline Iterator begin() const { return Iterator(this, 0); }
inline Iterator end() const { return Iterator(this, size()); }
private:
StructSchema parent;
List<schema::Field>::Reader list;
const uint16_t* indices;
uint size_;
inline FieldSubset(StructSchema parent, List<schema::Field>::Reader list,
const uint16_t* indices, uint size)
: parent(parent), list(list), indices(indices), size_(size) {}
friend class StructSchema;
};
// -------------------------------------------------------------------
class EnumSchema: public Schema {
public:
inline EnumSchema(): Schema(&_::NULL_ENUM_SCHEMA.defaultBrand) {}
class Enumerant;
class EnumerantList;
EnumerantList getEnumerants() const;
kj::Maybe<Enumerant> findEnumerantByName(kj::StringPtr name) const;
Enumerant getEnumerantByName(kj::StringPtr name) const;
// Like findEnumerantByName() but throws an exception on failure.
private:
EnumSchema(Schema base): Schema(base) {}
template <typename T> static inline EnumSchema fromImpl() {
return EnumSchema(Schema(&_::rawBrandedSchema<T>()));
}
friend class Schema;
friend class Type;
};
class EnumSchema::Enumerant {
public:
Enumerant() = default;
inline schema::Enumerant::Reader getProto() const { return proto; }
inline EnumSchema getContainingEnum() const { return parent; }
inline uint16_t getOrdinal() const { return ordinal; }
inline uint getIndex() const { return ordinal; }
inline bool operator==(const Enumerant& other) const;
inline bool operator!=(const Enumerant& other) const { return !(*this == other); }
private:
EnumSchema parent;
uint16_t ordinal;
schema::Enumerant::Reader proto;
inline Enumerant(EnumSchema parent, uint16_t ordinal, schema::Enumerant::Reader proto)
: parent(parent), ordinal(ordinal), proto(proto) {}
friend class EnumSchema;
};
class EnumSchema::EnumerantList {
public:
EnumerantList() = default; // empty list
inline uint size() const { return list.size(); }
inline Enumerant operator[](uint index) const { return Enumerant(parent, index, list[index]); }
typedef _::IndexingIterator<const EnumerantList, Enumerant> Iterator;
inline Iterator begin() const { return Iterator(this, 0); }
inline Iterator end() const { return Iterator(this, size()); }
private:
EnumSchema parent;
List<schema::Enumerant>::Reader list;
inline EnumerantList(EnumSchema parent, List<schema::Enumerant>::Reader list)
: parent(parent), list(list) {}
friend class EnumSchema;
};
// -------------------------------------------------------------------
class InterfaceSchema: public Schema {
public:
inline InterfaceSchema(): Schema(&_::NULL_INTERFACE_SCHEMA.defaultBrand) {}
class Method;
class MethodList;
MethodList getMethods() const;
kj::Maybe<Method> findMethodByName(kj::StringPtr name) const;
Method getMethodByName(kj::StringPtr name) const;
// Like findMethodByName() but throws an exception on failure.
class SuperclassList;
SuperclassList getSuperclasses() const;
// Get the immediate superclasses of this type, after applying generics.
bool extends(InterfaceSchema other) const;
// Returns true if `other` is a superclass of this interface (including if `other == *this`).
kj::Maybe<InterfaceSchema> findSuperclass(uint64_t typeId) const;
// Find the superclass of this interface with the given type ID. Returns null if the interface
// extends no such type.
private:
InterfaceSchema(Schema base): Schema(base) {}
template <typename T> static inline InterfaceSchema fromImpl() {
return InterfaceSchema(Schema(&_::rawBrandedSchema<T>()));
}
friend class Schema;
friend class Type;
kj::Maybe<Method> findMethodByName(kj::StringPtr name, uint& counter) const;
bool extends(InterfaceSchema other, uint& counter) const;
kj::Maybe<InterfaceSchema> findSuperclass(uint64_t typeId, uint& counter) const;
// We protect against malicious schemas with large or cyclic hierarchies by cutting off the
// search when the counter reaches a threshold.
};
class InterfaceSchema::Method {
public:
Method() = default;
inline schema::Method::Reader getProto() const { return proto; }
inline InterfaceSchema getContainingInterface() const { return parent; }
inline uint16_t getOrdinal() const { return ordinal; }
inline uint getIndex() const { return ordinal; }
StructSchema getParamType() const;
StructSchema getResultType() const;
// Get the parameter and result types, including substituting generic parameters.
inline bool operator==(const Method& other) const;
inline bool operator!=(const Method& other) const { return !(*this == other); }
private:
InterfaceSchema parent;
uint16_t ordinal;
schema::Method::Reader proto;
inline Method(InterfaceSchema parent, uint16_t ordinal,
schema::Method::Reader proto)
: parent(parent), ordinal(ordinal), proto(proto) {}
friend class InterfaceSchema;
};
class InterfaceSchema::MethodList {
public:
MethodList() = default; // empty list
inline uint size() const { return list.size(); }
inline Method operator[](uint index) const { return Method(parent, index, list[index]); }
typedef _::IndexingIterator<const MethodList, Method> Iterator;
inline Iterator begin() const { return Iterator(this, 0); }
inline Iterator end() const { return Iterator(this, size()); }
private:
InterfaceSchema parent;
List<schema::Method>::Reader list;
inline MethodList(InterfaceSchema parent, List<schema::Method>::Reader list)
: parent(parent), list(list) {}
friend class InterfaceSchema;
};
class InterfaceSchema::SuperclassList {
public:
SuperclassList() = default; // empty list
inline uint size() const { return list.size(); }
InterfaceSchema operator[](uint index) const;
typedef _::IndexingIterator<const SuperclassList, InterfaceSchema> Iterator;
inline Iterator begin() const { return Iterator(this, 0); }
inline Iterator end() const { return Iterator(this, size()); }
private:
InterfaceSchema parent;
List<schema::Superclass>::Reader list;
inline SuperclassList(InterfaceSchema parent, List<schema::Superclass>::Reader list)
: parent(parent), list(list) {}
friend class InterfaceSchema;
};
// -------------------------------------------------------------------
class ConstSchema: public Schema {
// Represents a constant declaration.
//
// `ConstSchema` can be implicitly cast to DynamicValue to read its value.
public:
inline ConstSchema(): Schema(&_::NULL_CONST_SCHEMA.defaultBrand) {}
template <typename T>
ReaderFor<T> as() const;
// Read the constant's value. This is a convenience method equivalent to casting the ConstSchema
// to a DynamicValue and then calling its `as<T>()` method. For dependency reasons, this method
// is defined in <capnp/dynamic.h>, which you must #include explicitly.
uint32_t getValueSchemaOffset() const;
// Much like StructSchema::Field::getDefaultValueSchemaOffset(), if the constant has pointer
// type, this gets the offset from the beginning of the constant's schema node to a pointer
// representing the constant value.
Type getType() const;
private:
ConstSchema(Schema base): Schema(base) {}
friend class Schema;
};
// -------------------------------------------------------------------
class Type {
public:
struct BrandParameter {
uint64_t scopeId;
uint index;
};
struct ImplicitParameter {
uint index;
};
inline Type();
inline Type(schema::Type::Which primitive);
inline Type(StructSchema schema);
inline Type(EnumSchema schema);
inline Type(InterfaceSchema schema);
inline Type(ListSchema schema);
inline Type(schema::Type::AnyPointer::Unconstrained::Which anyPointerKind);
inline Type(BrandParameter param);
inline Type(ImplicitParameter param);
template <typename T>
inline static Type from();
inline schema::Type::Which which() const;
StructSchema asStruct() const;
EnumSchema asEnum() const;
InterfaceSchema asInterface() const;
ListSchema asList() const;
// Each of these methods may only be called if which() returns the corresponding type.
kj::Maybe<BrandParameter> getBrandParameter() const;
// Only callable if which() returns ANY_POINTER. Returns null if the type is just a regular
// AnyPointer and not a parameter.
kj::Maybe<ImplicitParameter> getImplicitParameter() const;
// Only callable if which() returns ANY_POINTER. Returns null if the type is just a regular
// AnyPointer and not a parameter. "Implicit parameters" refer to type parameters on methods.
inline schema::Type::AnyPointer::Unconstrained::Which whichAnyPointerKind() const;
// Only callable if which() returns ANY_POINTER.
inline bool isVoid() const;
inline bool isBool() const;
inline bool isInt8() const;
inline bool isInt16() const;
inline bool isInt32() const;
inline bool isInt64() const;
inline bool isUInt8() const;
inline bool isUInt16() const;
inline bool isUInt32() const;
inline bool isUInt64() const;
inline bool isFloat32() const;
inline bool isFloat64() const;
inline bool isText() const;
inline bool isData() const;
inline bool isList() const;
inline bool isEnum() const;
inline bool isStruct() const;
inline bool isInterface() const;
inline bool isAnyPointer() const;
bool operator==(const Type& other) const;
inline bool operator!=(const Type& other) const { return !(*this == other); }
size_t hashCode() const;
inline Type wrapInList(uint depth = 1) const;
// Return the Type formed by wrapping this type in List() `depth` times.
inline Type(schema::Type::Which derived, const _::RawBrandedSchema* schema);
// For internal use.
private:
schema::Type::Which baseType; // type not including applications of List()
uint8_t listDepth; // 0 for T, 1 for List(T), 2 for List(List(T)), ...
bool isImplicitParam;
// If true, this refers to an implicit method parameter. baseType must be ANY_POINTER, scopeId
// must be zero, and paramIndex indicates the parameter index.
union {
uint16_t paramIndex;
// If baseType is ANY_POINTER but this Type actually refers to a type parameter, this is the
// index of the parameter among the parameters at its scope, and `scopeId` below is the type ID
// of the scope where the parameter was defined.
schema::Type::AnyPointer::Unconstrained::Which anyPointerKind;
// If scopeId is zero and isImplicitParam is false.
};
union {
const _::RawBrandedSchema* schema; // if type is struct, enum, interface...
uint64_t scopeId; // if type is AnyPointer but it's actually a type parameter...
};
Type(schema::Type::Which baseType, uint8_t listDepth, const _::RawBrandedSchema* schema)
: baseType(baseType), listDepth(listDepth), schema(schema) {
KJ_IREQUIRE(baseType != schema::Type::ANY_POINTER);
}
void requireUsableAs(Type expected) const;
friend class ListSchema; // only for requireUsableAs()
};
// -------------------------------------------------------------------
class ListSchema {
// ListSchema is a little different because list types are not described by schema nodes. So,
// ListSchema doesn't subclass Schema.
public:
ListSchema() = default;
static ListSchema of(schema::Type::Which primitiveType);
static ListSchema of(StructSchema elementType);
static ListSchema of(EnumSchema elementType);
static ListSchema of(InterfaceSchema elementType);
static ListSchema of(ListSchema elementType);
static ListSchema of(Type elementType);
// Construct the schema for a list of the given type.
static ListSchema of(schema::Type::Reader elementType, Schema context)
KJ_DEPRECATED("Does not handle generics correctly.");
// DEPRECATED: This method cannot correctly account for generic type parameter bindings that
// may apply to the input type. Instead of using this method, use a method of the Schema API
// that corresponds to the exact kind of dependency. For example, to get a field type, use
// StructSchema::Field::getType().
//
// Construct from an element type schema. Requires a context which can handle getDependency()
// requests for any type ID found in the schema.
Type getElementType() const;
inline schema::Type::Which whichElementType() const;
// Get the element type's "which()". ListSchema does not actually store a schema::Type::Reader
// describing the element type, but if it did, this would be equivalent to calling
// .getBody().which() on that type.
StructSchema getStructElementType() const;
EnumSchema getEnumElementType() const;
InterfaceSchema getInterfaceElementType() const;
ListSchema getListElementType() const;
// Get the schema for complex element types. Each of these throws an exception if the element
// type is not of the requested kind.
inline bool operator==(const ListSchema& other) const { return elementType == other.elementType; }
inline bool operator!=(const ListSchema& other) const { return elementType != other.elementType; }
template <typename T>
void requireUsableAs() const;
private:
Type elementType;
inline explicit ListSchema(Type elementType): elementType(elementType) {}
template <typename T>
struct FromImpl;
template <typename T> static inline ListSchema fromImpl() {
return FromImpl<T>::get();
}
void requireUsableAs(ListSchema expected) const;
friend class Schema;
};
// =======================================================================================
// inline implementation
template <> inline schema::Type::Which Schema::from<Void>() { return schema::Type::VOID; }
template <> inline schema::Type::Which Schema::from<bool>() { return schema::Type::BOOL; }
template <> inline schema::Type::Which Schema::from<int8_t>() { return schema::Type::INT8; }
template <> inline schema::Type::Which Schema::from<int16_t>() { return schema::Type::INT16; }
template <> inline schema::Type::Which Schema::from<int32_t>() { return schema::Type::INT32; }
template <> inline schema::Type::Which Schema::from<int64_t>() { return schema::Type::INT64; }
template <> inline schema::Type::Which Schema::from<uint8_t>() { return schema::Type::UINT8; }
template <> inline schema::Type::Which Schema::from<uint16_t>() { return schema::Type::UINT16; }
template <> inline schema::Type::Which Schema::from<uint32_t>() { return schema::Type::UINT32; }
template <> inline schema::Type::Which Schema::from<uint64_t>() { return schema::Type::UINT64; }
template <> inline schema::Type::Which Schema::from<float>() { return schema::Type::FLOAT32; }
template <> inline schema::Type::Which Schema::from<double>() { return schema::Type::FLOAT64; }
template <> inline schema::Type::Which Schema::from<Text>() { return schema::Type::TEXT; }
template <> inline schema::Type::Which Schema::from<Data>() { return schema::Type::DATA; }
inline Schema Schema::getDependency(uint64_t id) const {
return getDependency(id, 0);
}
inline bool Schema::isBranded() const {
return raw != &raw->generic->defaultBrand;
}
inline Schema Schema::getGeneric() const {
return Schema(&raw->generic->defaultBrand);
}
template <typename T>
inline void Schema::requireUsableAs() const {
requireUsableAs(&_::rawSchema<T>());
}
inline bool StructSchema::Field::operator==(const Field& other) const {
return parent == other.parent && index == other.index;
}
inline bool EnumSchema::Enumerant::operator==(const Enumerant& other) const {
return parent == other.parent && ordinal == other.ordinal;
}
inline bool InterfaceSchema::Method::operator==(const Method& other) const {
return parent == other.parent && ordinal == other.ordinal;
}
inline ListSchema ListSchema::of(StructSchema elementType) {
return ListSchema(Type(elementType));
}
inline ListSchema ListSchema::of(EnumSchema elementType) {
return ListSchema(Type(elementType));
}
inline ListSchema ListSchema::of(InterfaceSchema elementType) {
return ListSchema(Type(elementType));
}
inline ListSchema ListSchema::of(ListSchema elementType) {
return ListSchema(Type(elementType));
}
inline ListSchema ListSchema::of(Type elementType) {
return ListSchema(elementType);
}
inline Type ListSchema::getElementType() const {
return elementType;
}
inline schema::Type::Which ListSchema::whichElementType() const {
return elementType.which();
}
inline StructSchema ListSchema::getStructElementType() const {
return elementType.asStruct();
}
inline EnumSchema ListSchema::getEnumElementType() const {
return elementType.asEnum();
}
inline InterfaceSchema ListSchema::getInterfaceElementType() const {
return elementType.asInterface();
}
inline ListSchema ListSchema::getListElementType() const {
return elementType.asList();
}
template <typename T>
inline void ListSchema::requireUsableAs() const {
static_assert(kind<T>() == Kind::LIST,
"ListSchema::requireUsableAs<T>() requires T is a list type.");
requireUsableAs(Schema::from<T>());
}
inline void ListSchema::requireUsableAs(ListSchema expected) const {
elementType.requireUsableAs(expected.elementType);
}
template <typename T>
struct ListSchema::FromImpl<List<T>> {
static inline ListSchema get() { return of(Schema::from<T>()); }
};
inline Type::Type(): baseType(schema::Type::VOID), listDepth(0), schema(nullptr) {}
inline Type::Type(schema::Type::Which primitive)
: baseType(primitive), listDepth(0), isImplicitParam(false) {
KJ_IREQUIRE(primitive != schema::Type::STRUCT &&
primitive != schema::Type::ENUM &&
primitive != schema::Type::INTERFACE &&
primitive != schema::Type::LIST);
if (primitive == schema::Type::ANY_POINTER) {
scopeId = 0;
anyPointerKind = schema::Type::AnyPointer::Unconstrained::ANY_KIND;
} else {
schema = nullptr;
}
}
inline Type::Type(schema::Type::Which derived, const _::RawBrandedSchema* schema)
: baseType(derived), listDepth(0), isImplicitParam(false), schema(schema) {
KJ_IREQUIRE(derived == schema::Type::STRUCT ||
derived == schema::Type::ENUM ||
derived == schema::Type::INTERFACE);
}
inline Type::Type(StructSchema schema)
: baseType(schema::Type::STRUCT), listDepth(0), schema(schema.raw) {}
inline Type::Type(EnumSchema schema)
: baseType(schema::Type::ENUM), listDepth(0), schema(schema.raw) {}
inline Type::Type(InterfaceSchema schema)
: baseType(schema::Type::INTERFACE), listDepth(0), schema(schema.raw) {}
inline Type::Type(ListSchema schema)
: Type(schema.getElementType()) { ++listDepth; }
inline Type::Type(schema::Type::AnyPointer::Unconstrained::Which anyPointerKind)
: baseType(schema::Type::ANY_POINTER), listDepth(0), isImplicitParam(false),
anyPointerKind(anyPointerKind), scopeId(0) {}
inline Type::Type(BrandParameter param)
: baseType(schema::Type::ANY_POINTER), listDepth(0), isImplicitParam(false),
paramIndex(param.index), scopeId(param.scopeId) {}
inline Type::Type(ImplicitParameter param)
: baseType(schema::Type::ANY_POINTER), listDepth(0), isImplicitParam(true),
paramIndex(param.index), scopeId(0) {}
inline schema::Type::Which Type::which() const {
return listDepth > 0 ? schema::Type::LIST : baseType;
}
inline schema::Type::AnyPointer::Unconstrained::Which Type::whichAnyPointerKind() const {
KJ_IREQUIRE(baseType == schema::Type::ANY_POINTER);
return !isImplicitParam && scopeId == 0 ? anyPointerKind
: schema::Type::AnyPointer::Unconstrained::ANY_KIND;
}
template <typename T>
inline Type Type::from() { return Type(Schema::from<T>()); }
inline bool Type::isVoid () const { return baseType == schema::Type::VOID && listDepth == 0; }
inline bool Type::isBool () const { return baseType == schema::Type::BOOL && listDepth == 0; }
inline bool Type::isInt8 () const { return baseType == schema::Type::INT8 && listDepth == 0; }
inline bool Type::isInt16 () const { return baseType == schema::Type::INT16 && listDepth == 0; }
inline bool Type::isInt32 () const { return baseType == schema::Type::INT32 && listDepth == 0; }
inline bool Type::isInt64 () const { return baseType == schema::Type::INT64 && listDepth == 0; }
inline bool Type::isUInt8 () const { return baseType == schema::Type::UINT8 && listDepth == 0; }
inline bool Type::isUInt16 () const { return baseType == schema::Type::UINT16 && listDepth == 0; }
inline bool Type::isUInt32 () const { return baseType == schema::Type::UINT32 && listDepth == 0; }
inline bool Type::isUInt64 () const { return baseType == schema::Type::UINT64 && listDepth == 0; }
inline bool Type::isFloat32() const { return baseType == schema::Type::FLOAT32 && listDepth == 0; }
inline bool Type::isFloat64() const { return baseType == schema::Type::FLOAT64 && listDepth == 0; }
inline bool Type::isText () const { return baseType == schema::Type::TEXT && listDepth == 0; }
inline bool Type::isData () const { return baseType == schema::Type::DATA && listDepth == 0; }
inline bool Type::isList () const { return listDepth > 0; }
inline bool Type::isEnum () const { return baseType == schema::Type::ENUM && listDepth == 0; }
inline bool Type::isStruct () const { return baseType == schema::Type::STRUCT && listDepth == 0; }
inline bool Type::isInterface() const {
return baseType == schema::Type::INTERFACE && listDepth == 0;
}
inline bool Type::isAnyPointer() const {
return baseType == schema::Type::ANY_POINTER && listDepth == 0;
}
inline Type Type::wrapInList(uint depth) const {
Type result = *this;
result.listDepth += depth;
return result;
}
} // namespace capnp
#endif // CAPNP_SCHEMA_H_