You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1172 lines
45 KiB
1172 lines
45 KiB
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
|
|
// Licensed under the MIT License:
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
// THE SOFTWARE.
|
|
|
|
// This file contains types which are intended to help detect incorrect usage at compile
|
|
// time, but should then be optimized down to basic primitives (usually, integers) by the
|
|
// compiler.
|
|
|
|
#ifndef KJ_UNITS_H_
|
|
#define KJ_UNITS_H_
|
|
|
|
#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
|
|
#pragma GCC system_header
|
|
#endif
|
|
|
|
#include "common.h"
|
|
#include <inttypes.h>
|
|
|
|
namespace kj {
|
|
|
|
// =======================================================================================
|
|
// IDs
|
|
|
|
template <typename UnderlyingType, typename Label>
|
|
struct Id {
|
|
// A type-safe numeric ID. `UnderlyingType` is the underlying integer representation. `Label`
|
|
// distinguishes this Id from other Id types. Sample usage:
|
|
//
|
|
// class Foo;
|
|
// typedef Id<uint, Foo> FooId;
|
|
//
|
|
// class Bar;
|
|
// typedef Id<uint, Bar> BarId;
|
|
//
|
|
// You can now use the FooId and BarId types without any possibility of accidentally using a
|
|
// FooId when you really wanted a BarId or vice-versa.
|
|
|
|
UnderlyingType value;
|
|
|
|
inline constexpr Id(): value(0) {}
|
|
inline constexpr explicit Id(int value): value(value) {}
|
|
|
|
inline constexpr bool operator==(const Id& other) const { return value == other.value; }
|
|
inline constexpr bool operator!=(const Id& other) const { return value != other.value; }
|
|
inline constexpr bool operator<=(const Id& other) const { return value <= other.value; }
|
|
inline constexpr bool operator>=(const Id& other) const { return value >= other.value; }
|
|
inline constexpr bool operator< (const Id& other) const { return value < other.value; }
|
|
inline constexpr bool operator> (const Id& other) const { return value > other.value; }
|
|
};
|
|
|
|
// =======================================================================================
|
|
// Quantity and UnitRatio -- implement unit analysis via the type system
|
|
|
|
struct Unsafe_ {};
|
|
constexpr Unsafe_ unsafe = Unsafe_();
|
|
// Use as a parameter to constructors that are unsafe to indicate that you really do mean it.
|
|
|
|
template <uint64_t maxN, typename T>
|
|
class Bounded;
|
|
template <uint value>
|
|
class BoundedConst;
|
|
|
|
template <typename T> constexpr bool isIntegral() { return false; }
|
|
template <> constexpr bool isIntegral<char>() { return true; }
|
|
template <> constexpr bool isIntegral<signed char>() { return true; }
|
|
template <> constexpr bool isIntegral<short>() { return true; }
|
|
template <> constexpr bool isIntegral<int>() { return true; }
|
|
template <> constexpr bool isIntegral<long>() { return true; }
|
|
template <> constexpr bool isIntegral<long long>() { return true; }
|
|
template <> constexpr bool isIntegral<unsigned char>() { return true; }
|
|
template <> constexpr bool isIntegral<unsigned short>() { return true; }
|
|
template <> constexpr bool isIntegral<unsigned int>() { return true; }
|
|
template <> constexpr bool isIntegral<unsigned long>() { return true; }
|
|
template <> constexpr bool isIntegral<unsigned long long>() { return true; }
|
|
|
|
template <typename T>
|
|
struct IsIntegralOrBounded_ { static constexpr bool value = isIntegral<T>(); };
|
|
template <uint64_t m, typename T>
|
|
struct IsIntegralOrBounded_<Bounded<m, T>> { static constexpr bool value = true; };
|
|
template <uint v>
|
|
struct IsIntegralOrBounded_<BoundedConst<v>> { static constexpr bool value = true; };
|
|
|
|
template <typename T>
|
|
inline constexpr bool isIntegralOrBounded() { return IsIntegralOrBounded_<T>::value; }
|
|
|
|
template <typename Number, typename Unit1, typename Unit2>
|
|
class UnitRatio {
|
|
// A multiplier used to convert Quantities of one unit to Quantities of another unit. See
|
|
// Quantity, below.
|
|
//
|
|
// Construct this type by dividing one Quantity by another of a different unit. Use this type
|
|
// by multiplying it by a Quantity, or dividing a Quantity by it.
|
|
|
|
static_assert(isIntegralOrBounded<Number>(),
|
|
"Underlying type for UnitRatio must be integer.");
|
|
|
|
public:
|
|
inline UnitRatio() {}
|
|
|
|
constexpr UnitRatio(Number unit1PerUnit2, decltype(unsafe)): unit1PerUnit2(unit1PerUnit2) {}
|
|
// This constructor was intended to be private, but GCC complains about it being private in a
|
|
// bunch of places that don't appear to even call it, so I made it public. Oh well.
|
|
|
|
template <typename OtherNumber>
|
|
inline constexpr UnitRatio(const UnitRatio<OtherNumber, Unit1, Unit2>& other)
|
|
: unit1PerUnit2(other.unit1PerUnit2) {}
|
|
|
|
template <typename OtherNumber>
|
|
inline constexpr UnitRatio<decltype(Number()+OtherNumber()), Unit1, Unit2>
|
|
operator+(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
|
|
return UnitRatio<decltype(Number()+OtherNumber()), Unit1, Unit2>(
|
|
unit1PerUnit2 + other.unit1PerUnit2, unsafe);
|
|
}
|
|
template <typename OtherNumber>
|
|
inline constexpr UnitRatio<decltype(Number()-OtherNumber()), Unit1, Unit2>
|
|
operator-(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
|
|
return UnitRatio<decltype(Number()-OtherNumber()), Unit1, Unit2>(
|
|
unit1PerUnit2 - other.unit1PerUnit2, unsafe);
|
|
}
|
|
|
|
template <typename OtherNumber, typename Unit3>
|
|
inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>
|
|
operator*(UnitRatio<OtherNumber, Unit3, Unit1> other) const {
|
|
// U1 / U2 * U3 / U1 = U3 / U2
|
|
return UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>(
|
|
unit1PerUnit2 * other.unit1PerUnit2, unsafe);
|
|
}
|
|
template <typename OtherNumber, typename Unit3>
|
|
inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>
|
|
operator*(UnitRatio<OtherNumber, Unit2, Unit3> other) const {
|
|
// U1 / U2 * U2 / U3 = U1 / U3
|
|
return UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>(
|
|
unit1PerUnit2 * other.unit1PerUnit2, unsafe);
|
|
}
|
|
|
|
template <typename OtherNumber, typename Unit3>
|
|
inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>
|
|
operator/(UnitRatio<OtherNumber, Unit1, Unit3> other) const {
|
|
// (U1 / U2) / (U1 / U3) = U3 / U2
|
|
return UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>(
|
|
unit1PerUnit2 / other.unit1PerUnit2, unsafe);
|
|
}
|
|
template <typename OtherNumber, typename Unit3>
|
|
inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>
|
|
operator/(UnitRatio<OtherNumber, Unit3, Unit2> other) const {
|
|
// (U1 / U2) / (U3 / U2) = U1 / U3
|
|
return UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>(
|
|
unit1PerUnit2 / other.unit1PerUnit2, unsafe);
|
|
}
|
|
|
|
template <typename OtherNumber>
|
|
inline decltype(Number() / OtherNumber())
|
|
operator/(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
|
|
return unit1PerUnit2 / other.unit1PerUnit2;
|
|
}
|
|
|
|
inline bool operator==(UnitRatio other) const { return unit1PerUnit2 == other.unit1PerUnit2; }
|
|
inline bool operator!=(UnitRatio other) const { return unit1PerUnit2 != other.unit1PerUnit2; }
|
|
|
|
private:
|
|
Number unit1PerUnit2;
|
|
|
|
template <typename OtherNumber, typename OtherUnit>
|
|
friend class Quantity;
|
|
template <typename OtherNumber, typename OtherUnit1, typename OtherUnit2>
|
|
friend class UnitRatio;
|
|
|
|
template <typename N1, typename N2, typename U1, typename U2, typename>
|
|
friend inline constexpr UnitRatio<decltype(N1() * N2()), U1, U2>
|
|
operator*(N1, UnitRatio<N2, U1, U2>);
|
|
};
|
|
|
|
template <typename N1, typename N2, typename U1, typename U2,
|
|
typename = EnableIf<isIntegralOrBounded<N1>() && isIntegralOrBounded<N2>()>>
|
|
inline constexpr UnitRatio<decltype(N1() * N2()), U1, U2>
|
|
operator*(N1 n, UnitRatio<N2, U1, U2> r) {
|
|
return UnitRatio<decltype(N1() * N2()), U1, U2>(n * r.unit1PerUnit2, unsafe);
|
|
}
|
|
|
|
template <typename Number, typename Unit>
|
|
class Quantity {
|
|
// A type-safe numeric quantity, specified in terms of some unit. Two Quantities cannot be used
|
|
// in arithmetic unless they use the same unit. The `Unit` type parameter is only used to prevent
|
|
// accidental mixing of units; this type is never instantiated and can very well be incomplete.
|
|
// `Number` is the underlying primitive numeric type.
|
|
//
|
|
// Quantities support most basic arithmetic operators, intelligently handling units, and
|
|
// automatically casting the underlying type in the same way that the compiler would.
|
|
//
|
|
// To convert a primitive number to a Quantity, multiply it by unit<Quantity<N, U>>().
|
|
// To convert a Quantity to a primitive number, divide it by unit<Quantity<N, U>>().
|
|
// To convert a Quantity of one unit to another unit, multiply or divide by a UnitRatio.
|
|
//
|
|
// The Quantity class is not well-suited to hardcore physics as it does not allow multiplying
|
|
// one quantity by another. For example, multiplying meters by meters won't get you square
|
|
// meters; it will get you a compiler error. It would be interesting to see if template
|
|
// metaprogramming could properly deal with such things but this isn't needed for the present
|
|
// use case.
|
|
//
|
|
// Sample usage:
|
|
//
|
|
// class SecondsLabel;
|
|
// typedef Quantity<double, SecondsLabel> Seconds;
|
|
// constexpr Seconds SECONDS = unit<Seconds>();
|
|
//
|
|
// class MinutesLabel;
|
|
// typedef Quantity<double, MinutesLabel> Minutes;
|
|
// constexpr Minutes MINUTES = unit<Minutes>();
|
|
//
|
|
// constexpr UnitRatio<double, SecondsLabel, MinutesLabel> SECONDS_PER_MINUTE =
|
|
// 60 * SECONDS / MINUTES;
|
|
//
|
|
// void waitFor(Seconds seconds) {
|
|
// sleep(seconds / SECONDS);
|
|
// }
|
|
// void waitFor(Minutes minutes) {
|
|
// waitFor(minutes * SECONDS_PER_MINUTE);
|
|
// }
|
|
//
|
|
// void waitThreeMinutes() {
|
|
// waitFor(3 * MINUTES);
|
|
// }
|
|
|
|
static_assert(isIntegralOrBounded<Number>(),
|
|
"Underlying type for Quantity must be integer.");
|
|
|
|
public:
|
|
inline constexpr Quantity() = default;
|
|
|
|
inline constexpr Quantity(MaxValue_): value(maxValue) {}
|
|
inline constexpr Quantity(MinValue_): value(minValue) {}
|
|
// Allow initialization from maxValue and minValue.
|
|
// TODO(msvc): decltype(maxValue) and decltype(minValue) deduce unknown-type for these function
|
|
// parameters, causing the compiler to complain of a duplicate constructor definition, so we
|
|
// specify MaxValue_ and MinValue_ types explicitly.
|
|
|
|
inline constexpr Quantity(Number value, decltype(unsafe)): value(value) {}
|
|
// This constructor was intended to be private, but GCC complains about it being private in a
|
|
// bunch of places that don't appear to even call it, so I made it public. Oh well.
|
|
|
|
template <typename OtherNumber>
|
|
inline constexpr Quantity(const Quantity<OtherNumber, Unit>& other)
|
|
: value(other.value) {}
|
|
|
|
template <typename OtherNumber>
|
|
inline Quantity& operator=(const Quantity<OtherNumber, Unit>& other) {
|
|
value = other.value;
|
|
return *this;
|
|
}
|
|
|
|
template <typename OtherNumber>
|
|
inline constexpr Quantity<decltype(Number() + OtherNumber()), Unit>
|
|
operator+(const Quantity<OtherNumber, Unit>& other) const {
|
|
return Quantity<decltype(Number() + OtherNumber()), Unit>(value + other.value, unsafe);
|
|
}
|
|
template <typename OtherNumber>
|
|
inline constexpr Quantity<decltype(Number() - OtherNumber()), Unit>
|
|
operator-(const Quantity<OtherNumber, Unit>& other) const {
|
|
return Quantity<decltype(Number() - OtherNumber()), Unit>(value - other.value, unsafe);
|
|
}
|
|
template <typename OtherNumber, typename = EnableIf<isIntegralOrBounded<OtherNumber>()>>
|
|
inline constexpr Quantity<decltype(Number() * OtherNumber()), Unit>
|
|
operator*(OtherNumber other) const {
|
|
return Quantity<decltype(Number() * other), Unit>(value * other, unsafe);
|
|
}
|
|
template <typename OtherNumber, typename = EnableIf<isIntegralOrBounded<OtherNumber>()>>
|
|
inline constexpr Quantity<decltype(Number() / OtherNumber()), Unit>
|
|
operator/(OtherNumber other) const {
|
|
return Quantity<decltype(Number() / other), Unit>(value / other, unsafe);
|
|
}
|
|
template <typename OtherNumber>
|
|
inline constexpr decltype(Number() / OtherNumber())
|
|
operator/(const Quantity<OtherNumber, Unit>& other) const {
|
|
return value / other.value;
|
|
}
|
|
template <typename OtherNumber>
|
|
inline constexpr Quantity<decltype(Number() % OtherNumber()), Unit>
|
|
operator%(const Quantity<OtherNumber, Unit>& other) const {
|
|
return Quantity<decltype(Number() % OtherNumber()), Unit>(value % other.value, unsafe);
|
|
}
|
|
|
|
template <typename OtherNumber, typename OtherUnit>
|
|
inline constexpr Quantity<decltype(Number() * OtherNumber()), OtherUnit>
|
|
operator*(UnitRatio<OtherNumber, OtherUnit, Unit> ratio) const {
|
|
return Quantity<decltype(Number() * OtherNumber()), OtherUnit>(
|
|
value * ratio.unit1PerUnit2, unsafe);
|
|
}
|
|
template <typename OtherNumber, typename OtherUnit>
|
|
inline constexpr Quantity<decltype(Number() / OtherNumber()), OtherUnit>
|
|
operator/(UnitRatio<OtherNumber, Unit, OtherUnit> ratio) const {
|
|
return Quantity<decltype(Number() / OtherNumber()), OtherUnit>(
|
|
value / ratio.unit1PerUnit2, unsafe);
|
|
}
|
|
template <typename OtherNumber, typename OtherUnit>
|
|
inline constexpr Quantity<decltype(Number() % OtherNumber()), Unit>
|
|
operator%(UnitRatio<OtherNumber, Unit, OtherUnit> ratio) const {
|
|
return Quantity<decltype(Number() % OtherNumber()), Unit>(
|
|
value % ratio.unit1PerUnit2, unsafe);
|
|
}
|
|
template <typename OtherNumber, typename OtherUnit>
|
|
inline constexpr UnitRatio<decltype(Number() / OtherNumber()), Unit, OtherUnit>
|
|
operator/(Quantity<OtherNumber, OtherUnit> other) const {
|
|
return UnitRatio<decltype(Number() / OtherNumber()), Unit, OtherUnit>(
|
|
value / other.value, unsafe);
|
|
}
|
|
|
|
template <typename OtherNumber>
|
|
inline constexpr bool operator==(const Quantity<OtherNumber, Unit>& other) const {
|
|
return value == other.value;
|
|
}
|
|
template <typename OtherNumber>
|
|
inline constexpr bool operator!=(const Quantity<OtherNumber, Unit>& other) const {
|
|
return value != other.value;
|
|
}
|
|
template <typename OtherNumber>
|
|
inline constexpr bool operator<=(const Quantity<OtherNumber, Unit>& other) const {
|
|
return value <= other.value;
|
|
}
|
|
template <typename OtherNumber>
|
|
inline constexpr bool operator>=(const Quantity<OtherNumber, Unit>& other) const {
|
|
return value >= other.value;
|
|
}
|
|
template <typename OtherNumber>
|
|
inline constexpr bool operator<(const Quantity<OtherNumber, Unit>& other) const {
|
|
return value < other.value;
|
|
}
|
|
template <typename OtherNumber>
|
|
inline constexpr bool operator>(const Quantity<OtherNumber, Unit>& other) const {
|
|
return value > other.value;
|
|
}
|
|
|
|
template <typename OtherNumber>
|
|
inline Quantity& operator+=(const Quantity<OtherNumber, Unit>& other) {
|
|
value += other.value;
|
|
return *this;
|
|
}
|
|
template <typename OtherNumber>
|
|
inline Quantity& operator-=(const Quantity<OtherNumber, Unit>& other) {
|
|
value -= other.value;
|
|
return *this;
|
|
}
|
|
template <typename OtherNumber>
|
|
inline Quantity& operator*=(OtherNumber other) {
|
|
value *= other;
|
|
return *this;
|
|
}
|
|
template <typename OtherNumber>
|
|
inline Quantity& operator/=(OtherNumber other) {
|
|
value /= other.value;
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
Number value;
|
|
|
|
template <typename OtherNumber, typename OtherUnit>
|
|
friend class Quantity;
|
|
|
|
template <typename Number1, typename Number2, typename Unit2>
|
|
friend inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit2> b)
|
|
-> Quantity<decltype(Number1() * Number2()), Unit2>;
|
|
};
|
|
|
|
template <typename T> struct Unit_ {
|
|
static inline constexpr T get() { return T(1); }
|
|
};
|
|
template <typename T, typename U>
|
|
struct Unit_<Quantity<T, U>> {
|
|
static inline constexpr Quantity<decltype(Unit_<T>::get()), U> get() {
|
|
return Quantity<decltype(Unit_<T>::get()), U>(Unit_<T>::get(), unsafe);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
inline constexpr auto unit() -> decltype(Unit_<T>::get()) { return Unit_<T>::get(); }
|
|
// unit<Quantity<T, U>>() returns a Quantity of value 1. It also, intentionally, works on basic
|
|
// numeric types.
|
|
|
|
template <typename Number1, typename Number2, typename Unit>
|
|
inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit> b)
|
|
-> Quantity<decltype(Number1() * Number2()), Unit> {
|
|
return Quantity<decltype(Number1() * Number2()), Unit>(a * b.value, unsafe);
|
|
}
|
|
|
|
template <typename Number1, typename Number2, typename Unit, typename Unit2>
|
|
inline constexpr auto operator*(UnitRatio<Number1, Unit2, Unit> ratio,
|
|
Quantity<Number2, Unit> measure)
|
|
-> decltype(measure * ratio) {
|
|
return measure * ratio;
|
|
}
|
|
|
|
// =======================================================================================
|
|
// Absolute measures
|
|
|
|
template <typename T, typename Label>
|
|
class Absolute {
|
|
// Wraps some other value -- typically a Quantity -- but represents a value measured based on
|
|
// some absolute origin. For example, if `Duration` is a type representing a time duration,
|
|
// Absolute<Duration, UnixEpoch> might be a calendar date.
|
|
//
|
|
// Since Absolute represents measurements relative to some arbitrary origin, the only sensible
|
|
// arithmetic to perform on them is addition and subtraction.
|
|
|
|
// TODO(someday): Do the same automatic expansion of integer width that Quantity does? Doesn't
|
|
// matter for our time use case, where we always use 64-bit anyway. Note that fixing this
|
|
// would implicitly allow things like multiplying an Absolute by a UnitRatio to change its
|
|
// units, which is actually totally logical and kind of neat.
|
|
|
|
public:
|
|
inline constexpr Absolute operator+(const T& other) const { return Absolute(value + other); }
|
|
inline constexpr Absolute operator-(const T& other) const { return Absolute(value - other); }
|
|
inline constexpr T operator-(const Absolute& other) const { return value - other.value; }
|
|
|
|
inline Absolute& operator+=(const T& other) { value += other; return *this; }
|
|
inline Absolute& operator-=(const T& other) { value -= other; return *this; }
|
|
|
|
inline constexpr bool operator==(const Absolute& other) const { return value == other.value; }
|
|
inline constexpr bool operator!=(const Absolute& other) const { return value != other.value; }
|
|
inline constexpr bool operator<=(const Absolute& other) const { return value <= other.value; }
|
|
inline constexpr bool operator>=(const Absolute& other) const { return value >= other.value; }
|
|
inline constexpr bool operator< (const Absolute& other) const { return value < other.value; }
|
|
inline constexpr bool operator> (const Absolute& other) const { return value > other.value; }
|
|
|
|
private:
|
|
T value;
|
|
|
|
explicit constexpr Absolute(T value): value(value) {}
|
|
|
|
template <typename U>
|
|
friend inline constexpr U origin();
|
|
};
|
|
|
|
template <typename T, typename Label>
|
|
inline constexpr Absolute<T, Label> operator+(const T& a, const Absolute<T, Label>& b) {
|
|
return b + a;
|
|
}
|
|
|
|
template <typename T> struct UnitOf_ { typedef T Type; };
|
|
template <typename T, typename Label> struct UnitOf_<Absolute<T, Label>> { typedef T Type; };
|
|
template <typename T>
|
|
using UnitOf = typename UnitOf_<T>::Type;
|
|
// UnitOf<Absolute<T, U>> is T. UnitOf<AnythingElse> is AnythingElse.
|
|
|
|
template <typename T>
|
|
inline constexpr T origin() { return T(0 * unit<UnitOf<T>>()); }
|
|
// origin<Absolute<T, U>>() returns an Absolute of value 0. It also, intentionally, works on basic
|
|
// numeric types.
|
|
|
|
// =======================================================================================
|
|
// Overflow avoidance
|
|
|
|
template <uint64_t n, uint accum = 0>
|
|
struct BitCount_ {
|
|
static constexpr uint value = BitCount_<(n >> 1), accum + 1>::value;
|
|
};
|
|
template <uint accum>
|
|
struct BitCount_<0, accum> {
|
|
static constexpr uint value = accum;
|
|
};
|
|
|
|
template <uint64_t n>
|
|
inline constexpr uint bitCount() { return BitCount_<n>::value; }
|
|
// Number of bits required to represent the number `n`.
|
|
|
|
template <uint bitCountBitCount> struct AtLeastUInt_ {
|
|
static_assert(bitCountBitCount < 7, "don't know how to represent integers over 64 bits");
|
|
};
|
|
template <> struct AtLeastUInt_<0> { typedef uint8_t Type; };
|
|
template <> struct AtLeastUInt_<1> { typedef uint8_t Type; };
|
|
template <> struct AtLeastUInt_<2> { typedef uint8_t Type; };
|
|
template <> struct AtLeastUInt_<3> { typedef uint8_t Type; };
|
|
template <> struct AtLeastUInt_<4> { typedef uint16_t Type; };
|
|
template <> struct AtLeastUInt_<5> { typedef uint32_t Type; };
|
|
template <> struct AtLeastUInt_<6> { typedef uint64_t Type; };
|
|
|
|
template <uint bits>
|
|
using AtLeastUInt = typename AtLeastUInt_<bitCount<max(bits, 1) - 1>()>::Type;
|
|
// AtLeastUInt<n> is an unsigned integer of at least n bits. E.g. AtLeastUInt<12> is uint16_t.
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
template <uint value>
|
|
class BoundedConst {
|
|
// A constant integer value on which we can do bit size analysis.
|
|
|
|
public:
|
|
BoundedConst() = default;
|
|
|
|
inline constexpr uint unwrap() const { return value; }
|
|
|
|
#define OP(op, check) \
|
|
template <uint other> \
|
|
inline constexpr BoundedConst<(value op other)> \
|
|
operator op(BoundedConst<other>) const { \
|
|
static_assert(check, "overflow in BoundedConst arithmetic"); \
|
|
return BoundedConst<(value op other)>(); \
|
|
}
|
|
#define COMPARE_OP(op) \
|
|
template <uint other> \
|
|
inline constexpr bool operator op(BoundedConst<other>) const { \
|
|
return value op other; \
|
|
}
|
|
|
|
OP(+, value + other >= value)
|
|
OP(-, value - other <= value)
|
|
OP(*, value * other / other == value)
|
|
OP(/, true) // div by zero already errors out; no other division ever overflows
|
|
OP(%, true) // mod by zero already errors out; no other modulus ever overflows
|
|
OP(<<, value << other >= value)
|
|
OP(>>, true) // right shift can't overflow
|
|
OP(&, true) // bitwise ops can't overflow
|
|
OP(|, true) // bitwise ops can't overflow
|
|
|
|
COMPARE_OP(==)
|
|
COMPARE_OP(!=)
|
|
COMPARE_OP(< )
|
|
COMPARE_OP(> )
|
|
COMPARE_OP(<=)
|
|
COMPARE_OP(>=)
|
|
#undef OP
|
|
#undef COMPARE_OP
|
|
};
|
|
|
|
template <uint64_t m, typename T>
|
|
struct Unit_<Bounded<m, T>> {
|
|
static inline constexpr BoundedConst<1> get() { return BoundedConst<1>(); }
|
|
};
|
|
|
|
template <uint value>
|
|
struct Unit_<BoundedConst<value>> {
|
|
static inline constexpr BoundedConst<1> get() { return BoundedConst<1>(); }
|
|
};
|
|
|
|
template <uint value>
|
|
inline constexpr BoundedConst<value> bounded() {
|
|
return BoundedConst<value>();
|
|
}
|
|
|
|
template <uint64_t a, uint64_t b>
|
|
static constexpr uint64_t boundedAdd() {
|
|
static_assert(a + b >= a, "possible overflow detected");
|
|
return a + b;
|
|
}
|
|
template <uint64_t a, uint64_t b>
|
|
static constexpr uint64_t boundedSub() {
|
|
static_assert(a - b <= a, "possible underflow detected");
|
|
return a - b;
|
|
}
|
|
template <uint64_t a, uint64_t b>
|
|
static constexpr uint64_t boundedMul() {
|
|
static_assert(a * b / b == a, "possible overflow detected");
|
|
return a * b;
|
|
}
|
|
template <uint64_t a, uint64_t b>
|
|
static constexpr uint64_t boundedLShift() {
|
|
static_assert(a << b >= a, "possible overflow detected");
|
|
return a << b;
|
|
}
|
|
|
|
template <uint a, uint b>
|
|
inline constexpr BoundedConst<kj::min(a, b)> min(BoundedConst<a>, BoundedConst<b>) {
|
|
return bounded<kj::min(a, b)>();
|
|
}
|
|
template <uint a, uint b>
|
|
inline constexpr BoundedConst<kj::max(a, b)> max(BoundedConst<a>, BoundedConst<b>) {
|
|
return bounded<kj::max(a, b)>();
|
|
}
|
|
// We need to override min() and max() between constants because the ternary operator in the
|
|
// default implementation would complain.
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
template <uint64_t maxN, typename T>
|
|
class Bounded {
|
|
public:
|
|
static_assert(maxN <= T(kj::maxValue), "possible overflow detected");
|
|
|
|
Bounded() = default;
|
|
|
|
Bounded(const Bounded& other) = default;
|
|
template <typename OtherInt, typename = EnableIf<isIntegral<OtherInt>()>>
|
|
inline constexpr Bounded(OtherInt value): value(value) {
|
|
static_assert(OtherInt(maxValue) <= maxN, "possible overflow detected");
|
|
}
|
|
template <uint64_t otherMax, typename OtherT>
|
|
inline constexpr Bounded(const Bounded<otherMax, OtherT>& other)
|
|
: value(other.value) {
|
|
static_assert(otherMax <= maxN, "possible overflow detected");
|
|
}
|
|
template <uint otherValue>
|
|
inline constexpr Bounded(BoundedConst<otherValue>)
|
|
: value(otherValue) {
|
|
static_assert(otherValue <= maxN, "overflow detected");
|
|
}
|
|
|
|
Bounded& operator=(const Bounded& other) = default;
|
|
template <typename OtherInt, typename = EnableIf<isIntegral<OtherInt>()>>
|
|
Bounded& operator=(OtherInt other) {
|
|
static_assert(OtherInt(maxValue) <= maxN, "possible overflow detected");
|
|
value = other;
|
|
return *this;
|
|
}
|
|
template <uint64_t otherMax, typename OtherT>
|
|
inline Bounded& operator=(const Bounded<otherMax, OtherT>& other) {
|
|
static_assert(otherMax <= maxN, "possible overflow detected");
|
|
value = other.value;
|
|
return *this;
|
|
}
|
|
template <uint otherValue>
|
|
inline Bounded& operator=(BoundedConst<otherValue>) {
|
|
static_assert(otherValue <= maxN, "overflow detected");
|
|
value = otherValue;
|
|
return *this;
|
|
}
|
|
|
|
inline constexpr T unwrap() const { return value; }
|
|
|
|
#define OP(op, newMax) \
|
|
template <uint64_t otherMax, typename otherT> \
|
|
inline constexpr Bounded<newMax, decltype(T() op otherT())> \
|
|
operator op(const Bounded<otherMax, otherT>& other) const { \
|
|
return Bounded<newMax, decltype(T() op otherT())>(value op other.value, unsafe); \
|
|
}
|
|
#define COMPARE_OP(op) \
|
|
template <uint64_t otherMax, typename OtherT> \
|
|
inline constexpr bool operator op(const Bounded<otherMax, OtherT>& other) const { \
|
|
return value op other.value; \
|
|
}
|
|
|
|
OP(+, (boundedAdd<maxN, otherMax>()))
|
|
OP(*, (boundedMul<maxN, otherMax>()))
|
|
OP(/, maxN)
|
|
OP(%, otherMax - 1)
|
|
|
|
// operator- is intentionally omitted because we mostly use this with unsigned types, and
|
|
// subtraction requires proof that subtrahend is not greater than the minuend.
|
|
|
|
COMPARE_OP(==)
|
|
COMPARE_OP(!=)
|
|
COMPARE_OP(< )
|
|
COMPARE_OP(> )
|
|
COMPARE_OP(<=)
|
|
COMPARE_OP(>=)
|
|
|
|
#undef OP
|
|
#undef COMPARE_OP
|
|
|
|
template <uint64_t newMax, typename ErrorFunc>
|
|
inline Bounded<newMax, T> assertMax(ErrorFunc&& func) const {
|
|
// Assert that the number is no more than `newMax`. Otherwise, call `func`.
|
|
static_assert(newMax < maxN, "this bounded size assertion is redundant");
|
|
if (KJ_UNLIKELY(value > newMax)) func();
|
|
return Bounded<newMax, T>(value, unsafe);
|
|
}
|
|
|
|
template <uint64_t otherMax, typename OtherT, typename ErrorFunc>
|
|
inline Bounded<maxN, decltype(T() - OtherT())> subtractChecked(
|
|
const Bounded<otherMax, OtherT>& other, ErrorFunc&& func) const {
|
|
// Subtract a number, calling func() if the result would underflow.
|
|
if (KJ_UNLIKELY(value < other.value)) func();
|
|
return Bounded<maxN, decltype(T() - OtherT())>(value - other.value, unsafe);
|
|
}
|
|
|
|
template <uint otherValue, typename ErrorFunc>
|
|
inline Bounded<maxN - otherValue, T> subtractChecked(
|
|
BoundedConst<otherValue>, ErrorFunc&& func) const {
|
|
// Subtract a number, calling func() if the result would underflow.
|
|
static_assert(otherValue <= maxN, "underflow detected");
|
|
if (KJ_UNLIKELY(value < otherValue)) func();
|
|
return Bounded<maxN - otherValue, T>(value - otherValue, unsafe);
|
|
}
|
|
|
|
template <uint64_t otherMax, typename OtherT>
|
|
inline Maybe<Bounded<maxN, decltype(T() - OtherT())>> trySubtract(
|
|
const Bounded<otherMax, OtherT>& other) const {
|
|
// Subtract a number, calling func() if the result would underflow.
|
|
if (value < other.value) {
|
|
return nullptr;
|
|
} else {
|
|
return Bounded<maxN, decltype(T() - OtherT())>(value - other.value, unsafe);
|
|
}
|
|
}
|
|
|
|
template <uint otherValue>
|
|
inline Maybe<Bounded<maxN - otherValue, T>> trySubtract(BoundedConst<otherValue>) const {
|
|
// Subtract a number, calling func() if the result would underflow.
|
|
if (value < otherValue) {
|
|
return nullptr;
|
|
} else {
|
|
return Bounded<maxN - otherValue, T>(value - otherValue, unsafe);
|
|
}
|
|
}
|
|
|
|
inline constexpr Bounded(T value, decltype(unsafe)): value(value) {}
|
|
template <uint64_t otherMax, typename OtherT>
|
|
inline constexpr Bounded(Bounded<otherMax, OtherT> value, decltype(unsafe))
|
|
: value(value.value) {}
|
|
// Mainly for internal use.
|
|
//
|
|
// Only use these as a last resort, with ample commentary on why you think it's safe.
|
|
|
|
private:
|
|
T value;
|
|
|
|
template <uint64_t, typename>
|
|
friend class Bounded;
|
|
};
|
|
|
|
template <typename Number>
|
|
inline constexpr Bounded<Number(kj::maxValue), Number> bounded(Number value) {
|
|
return Bounded<Number(kj::maxValue), Number>(value, unsafe);
|
|
}
|
|
|
|
inline constexpr Bounded<1, uint8_t> bounded(bool value) {
|
|
return Bounded<1, uint8_t>(value, unsafe);
|
|
}
|
|
|
|
template <uint bits, typename Number>
|
|
inline constexpr Bounded<maxValueForBits<bits>(), Number> assumeBits(Number value) {
|
|
return Bounded<maxValueForBits<bits>(), Number>(value, unsafe);
|
|
}
|
|
|
|
template <uint bits, uint64_t maxN, typename T>
|
|
inline constexpr Bounded<maxValueForBits<bits>(), T> assumeBits(Bounded<maxN, T> value) {
|
|
return Bounded<maxValueForBits<bits>(), T>(value, unsafe);
|
|
}
|
|
|
|
template <uint bits, typename Number, typename Unit>
|
|
inline constexpr auto assumeBits(Quantity<Number, Unit> value)
|
|
-> Quantity<decltype(assumeBits<bits>(value / unit<Quantity<Number, Unit>>())), Unit> {
|
|
return Quantity<decltype(assumeBits<bits>(value / unit<Quantity<Number, Unit>>())), Unit>(
|
|
assumeBits<bits>(value / unit<Quantity<Number, Unit>>()), unsafe);
|
|
}
|
|
|
|
template <uint64_t maxN, typename Number>
|
|
inline constexpr Bounded<maxN, Number> assumeMax(Number value) {
|
|
return Bounded<maxN, Number>(value, unsafe);
|
|
}
|
|
|
|
template <uint64_t newMaxN, uint64_t maxN, typename T>
|
|
inline constexpr Bounded<newMaxN, T> assumeMax(Bounded<maxN, T> value) {
|
|
return Bounded<newMaxN, T>(value, unsafe);
|
|
}
|
|
|
|
template <uint64_t maxN, typename Number, typename Unit>
|
|
inline constexpr auto assumeMax(Quantity<Number, Unit> value)
|
|
-> Quantity<decltype(assumeMax<maxN>(value / unit<Quantity<Number, Unit>>())), Unit> {
|
|
return Quantity<decltype(assumeMax<maxN>(value / unit<Quantity<Number, Unit>>())), Unit>(
|
|
assumeMax<maxN>(value / unit<Quantity<Number, Unit>>()), unsafe);
|
|
}
|
|
|
|
template <uint maxN, typename Number>
|
|
inline constexpr Bounded<maxN, Number> assumeMax(BoundedConst<maxN>, Number value) {
|
|
return assumeMax<maxN>(value);
|
|
}
|
|
|
|
template <uint newMaxN, uint64_t maxN, typename T>
|
|
inline constexpr Bounded<newMaxN, T> assumeMax(BoundedConst<maxN>, Bounded<maxN, T> value) {
|
|
return assumeMax<maxN>(value);
|
|
}
|
|
|
|
template <uint maxN, typename Number, typename Unit>
|
|
inline constexpr auto assumeMax(Quantity<BoundedConst<maxN>, Unit>, Quantity<Number, Unit> value)
|
|
-> decltype(assumeMax<maxN>(value)) {
|
|
return assumeMax<maxN>(value);
|
|
}
|
|
|
|
template <uint64_t newMax, uint64_t maxN, typename T, typename ErrorFunc>
|
|
inline Bounded<newMax, T> assertMax(Bounded<maxN, T> value, ErrorFunc&& errorFunc) {
|
|
// Assert that the bounded value is less than or equal to the given maximum, calling errorFunc()
|
|
// if not.
|
|
static_assert(newMax < maxN, "this bounded size assertion is redundant");
|
|
return value.template assertMax<newMax>(kj::fwd<ErrorFunc>(errorFunc));
|
|
}
|
|
|
|
template <uint64_t newMax, uint64_t maxN, typename T, typename Unit, typename ErrorFunc>
|
|
inline Quantity<Bounded<newMax, T>, Unit> assertMax(
|
|
Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc) {
|
|
// Assert that the bounded value is less than or equal to the given maximum, calling errorFunc()
|
|
// if not.
|
|
static_assert(newMax < maxN, "this bounded size assertion is redundant");
|
|
return (value / unit<decltype(value)>()).template assertMax<newMax>(
|
|
kj::fwd<ErrorFunc>(errorFunc)) * unit<decltype(value)>();
|
|
}
|
|
|
|
template <uint newMax, uint64_t maxN, typename T, typename ErrorFunc>
|
|
inline Bounded<newMax, T> assertMax(
|
|
BoundedConst<newMax>, Bounded<maxN, T> value, ErrorFunc&& errorFunc) {
|
|
return assertMax<newMax>(value, kj::mv(errorFunc));
|
|
}
|
|
|
|
template <uint newMax, uint64_t maxN, typename T, typename Unit, typename ErrorFunc>
|
|
inline Quantity<Bounded<newMax, T>, Unit> assertMax(
|
|
Quantity<BoundedConst<newMax>, Unit>,
|
|
Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc) {
|
|
return assertMax<newMax>(value, kj::mv(errorFunc));
|
|
}
|
|
|
|
template <uint64_t newBits, uint64_t maxN, typename T, typename ErrorFunc = ThrowOverflow>
|
|
inline Bounded<maxValueForBits<newBits>(), T> assertMaxBits(
|
|
Bounded<maxN, T> value, ErrorFunc&& errorFunc = ErrorFunc()) {
|
|
// Assert that the bounded value requires no more than the given number of bits, calling
|
|
// errorFunc() if not.
|
|
return assertMax<maxValueForBits<newBits>()>(value, kj::fwd<ErrorFunc>(errorFunc));
|
|
}
|
|
|
|
template <uint64_t newBits, uint64_t maxN, typename T, typename Unit,
|
|
typename ErrorFunc = ThrowOverflow>
|
|
inline Quantity<Bounded<maxValueForBits<newBits>(), T>, Unit> assertMaxBits(
|
|
Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc = ErrorFunc()) {
|
|
// Assert that the bounded value requires no more than the given number of bits, calling
|
|
// errorFunc() if not.
|
|
return assertMax<maxValueForBits<newBits>()>(value, kj::fwd<ErrorFunc>(errorFunc));
|
|
}
|
|
|
|
template <typename newT, uint64_t maxN, typename T>
|
|
inline constexpr Bounded<maxN, newT> upgradeBound(Bounded<maxN, T> value) {
|
|
return value;
|
|
}
|
|
|
|
template <typename newT, uint64_t maxN, typename T, typename Unit>
|
|
inline constexpr Quantity<Bounded<maxN, newT>, Unit> upgradeBound(
|
|
Quantity<Bounded<maxN, T>, Unit> value) {
|
|
return value;
|
|
}
|
|
|
|
template <uint64_t maxN, typename T, typename Other, typename ErrorFunc>
|
|
inline auto subtractChecked(Bounded<maxN, T> value, Other other, ErrorFunc&& errorFunc)
|
|
-> decltype(value.subtractChecked(other, kj::fwd<ErrorFunc>(errorFunc))) {
|
|
return value.subtractChecked(other, kj::fwd<ErrorFunc>(errorFunc));
|
|
}
|
|
|
|
template <typename T, typename U, typename Unit, typename ErrorFunc>
|
|
inline auto subtractChecked(Quantity<T, Unit> value, Quantity<U, Unit> other, ErrorFunc&& errorFunc)
|
|
-> Quantity<decltype(subtractChecked(T(), U(), kj::fwd<ErrorFunc>(errorFunc))), Unit> {
|
|
return subtractChecked(value / unit<Quantity<T, Unit>>(),
|
|
other / unit<Quantity<U, Unit>>(),
|
|
kj::fwd<ErrorFunc>(errorFunc))
|
|
* unit<Quantity<T, Unit>>();
|
|
}
|
|
|
|
template <uint64_t maxN, typename T, typename Other>
|
|
inline auto trySubtract(Bounded<maxN, T> value, Other other)
|
|
-> decltype(value.trySubtract(other)) {
|
|
return value.trySubtract(other);
|
|
}
|
|
|
|
template <typename T, typename U, typename Unit>
|
|
inline auto trySubtract(Quantity<T, Unit> value, Quantity<U, Unit> other)
|
|
-> Maybe<Quantity<decltype(subtractChecked(T(), U(), int())), Unit>> {
|
|
return trySubtract(value / unit<Quantity<T, Unit>>(),
|
|
other / unit<Quantity<U, Unit>>())
|
|
.map([](decltype(subtractChecked(T(), U(), int())) x) {
|
|
return x * unit<Quantity<T, Unit>>();
|
|
});
|
|
}
|
|
|
|
template <uint64_t aN, uint64_t bN, typename A, typename B>
|
|
inline constexpr Bounded<kj::min(aN, bN), WiderType<A, B>>
|
|
min(Bounded<aN, A> a, Bounded<bN, B> b) {
|
|
return Bounded<kj::min(aN, bN), WiderType<A, B>>(kj::min(a.unwrap(), b.unwrap()), unsafe);
|
|
}
|
|
template <uint64_t aN, uint64_t bN, typename A, typename B>
|
|
inline constexpr Bounded<kj::max(aN, bN), WiderType<A, B>>
|
|
max(Bounded<aN, A> a, Bounded<bN, B> b) {
|
|
return Bounded<kj::max(aN, bN), WiderType<A, B>>(kj::max(a.unwrap(), b.unwrap()), unsafe);
|
|
}
|
|
// We need to override min() and max() because:
|
|
// 1) WiderType<> might not choose the correct bounds.
|
|
// 2) One of the two sides of the ternary operator in the default implementation would fail to
|
|
// typecheck even though it is OK in practice.
|
|
|
|
// -------------------------------------------------------------------
|
|
// Operators between Bounded and BoundedConst
|
|
|
|
#define OP(op, newMax) \
|
|
template <uint64_t maxN, uint cvalue, typename T> \
|
|
inline constexpr Bounded<(newMax), decltype(T() op uint())> operator op( \
|
|
Bounded<maxN, T> value, BoundedConst<cvalue>) { \
|
|
return Bounded<(newMax), decltype(T() op uint())>(value.unwrap() op cvalue, unsafe); \
|
|
}
|
|
|
|
#define REVERSE_OP(op, newMax) \
|
|
template <uint64_t maxN, uint cvalue, typename T> \
|
|
inline constexpr Bounded<(newMax), decltype(uint() op T())> operator op( \
|
|
BoundedConst<cvalue>, Bounded<maxN, T> value) { \
|
|
return Bounded<(newMax), decltype(uint() op T())>(cvalue op value.unwrap(), unsafe); \
|
|
}
|
|
|
|
#define COMPARE_OP(op) \
|
|
template <uint64_t maxN, uint cvalue, typename T> \
|
|
inline constexpr bool operator op(Bounded<maxN, T> value, BoundedConst<cvalue>) { \
|
|
return value.unwrap() op cvalue; \
|
|
} \
|
|
template <uint64_t maxN, uint cvalue, typename T> \
|
|
inline constexpr bool operator op(BoundedConst<cvalue>, Bounded<maxN, T> value) { \
|
|
return cvalue op value.unwrap(); \
|
|
}
|
|
|
|
OP(+, (boundedAdd<maxN, cvalue>()))
|
|
REVERSE_OP(+, (boundedAdd<maxN, cvalue>()))
|
|
|
|
OP(*, (boundedMul<maxN, cvalue>()))
|
|
REVERSE_OP(*, (boundedAdd<maxN, cvalue>()))
|
|
|
|
OP(/, maxN / cvalue)
|
|
REVERSE_OP(/, cvalue) // denominator could be 1
|
|
|
|
OP(%, cvalue - 1)
|
|
REVERSE_OP(%, maxN - 1)
|
|
|
|
OP(<<, (boundedLShift<maxN, cvalue>()))
|
|
REVERSE_OP(<<, (boundedLShift<cvalue, maxN>()))
|
|
|
|
OP(>>, maxN >> cvalue)
|
|
REVERSE_OP(>>, cvalue >> maxN)
|
|
|
|
OP(&, maxValueForBits<bitCount<maxN>()>() & cvalue)
|
|
REVERSE_OP(&, maxValueForBits<bitCount<maxN>()>() & cvalue)
|
|
|
|
OP(|, maxN | cvalue)
|
|
REVERSE_OP(|, maxN | cvalue)
|
|
|
|
COMPARE_OP(==)
|
|
COMPARE_OP(!=)
|
|
COMPARE_OP(< )
|
|
COMPARE_OP(> )
|
|
COMPARE_OP(<=)
|
|
COMPARE_OP(>=)
|
|
|
|
#undef OP
|
|
#undef REVERSE_OP
|
|
#undef COMPARE_OP
|
|
|
|
template <uint64_t maxN, uint cvalue, typename T>
|
|
inline constexpr Bounded<cvalue, decltype(uint() - T())>
|
|
operator-(BoundedConst<cvalue>, Bounded<maxN, T> value) {
|
|
// We allow subtraction of a variable from a constant only if the constant is greater than or
|
|
// equal to the maximum possible value of the variable. Since the variable could be zero, the
|
|
// result can be as large as the constant.
|
|
//
|
|
// We do not allow subtraction of a constant from a variable because there's never a guarantee it
|
|
// won't underflow (unless the constant is zero, which is silly).
|
|
static_assert(cvalue >= maxN, "possible underflow detected");
|
|
return Bounded<cvalue, decltype(uint() - T())>(cvalue - value.unwrap(), unsafe);
|
|
}
|
|
|
|
template <uint64_t aN, uint b, typename A>
|
|
inline constexpr Bounded<kj::min(aN, b), A> min(Bounded<aN, A> a, BoundedConst<b>) {
|
|
return Bounded<kj::min(aN, b), A>(kj::min(b, a.unwrap()), unsafe);
|
|
}
|
|
template <uint64_t aN, uint b, typename A>
|
|
inline constexpr Bounded<kj::min(aN, b), A> min(BoundedConst<b>, Bounded<aN, A> a) {
|
|
return Bounded<kj::min(aN, b), A>(kj::min(a.unwrap(), b), unsafe);
|
|
}
|
|
template <uint64_t aN, uint b, typename A>
|
|
inline constexpr Bounded<kj::max(aN, b), A> max(Bounded<aN, A> a, BoundedConst<b>) {
|
|
return Bounded<kj::max(aN, b), A>(kj::max(b, a.unwrap()), unsafe);
|
|
}
|
|
template <uint64_t aN, uint b, typename A>
|
|
inline constexpr Bounded<kj::max(aN, b), A> max(BoundedConst<b>, Bounded<aN, A> a) {
|
|
return Bounded<kj::max(aN, b), A>(kj::max(a.unwrap(), b), unsafe);
|
|
}
|
|
// We need to override min() between a Bounded and a constant since:
|
|
// 1) WiderType<> might choose BoundedConst over a 1-byte Bounded, which is wrong.
|
|
// 2) To clamp the bounds of the output type.
|
|
// 3) Same ternary operator typechecking issues.
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
template <uint64_t maxN, typename T>
|
|
class SafeUnwrapper {
|
|
public:
|
|
inline explicit constexpr SafeUnwrapper(Bounded<maxN, T> value): value(value.unwrap()) {}
|
|
|
|
template <typename U, typename = EnableIf<isIntegral<U>()>>
|
|
inline constexpr operator U() const {
|
|
static_assert(maxN <= U(maxValue), "possible truncation detected");
|
|
return value;
|
|
}
|
|
|
|
inline constexpr operator bool() const {
|
|
static_assert(maxN <= 1, "possible truncation detected");
|
|
return value;
|
|
}
|
|
|
|
private:
|
|
T value;
|
|
};
|
|
|
|
template <uint64_t maxN, typename T>
|
|
inline constexpr SafeUnwrapper<maxN, T> unbound(Bounded<maxN, T> bounded) {
|
|
// Unwraps the bounded value, returning a value that can be implicitly cast to any integer type.
|
|
// If this implicit cast could truncate, a compile-time error will be raised.
|
|
return SafeUnwrapper<maxN, T>(bounded);
|
|
}
|
|
|
|
template <uint64_t value>
|
|
class SafeConstUnwrapper {
|
|
public:
|
|
template <typename T, typename = EnableIf<isIntegral<T>()>>
|
|
inline constexpr operator T() const {
|
|
static_assert(value <= T(maxValue), "this operation will truncate");
|
|
return value;
|
|
}
|
|
|
|
inline constexpr operator bool() const {
|
|
static_assert(value <= 1, "this operation will truncate");
|
|
return value;
|
|
}
|
|
};
|
|
|
|
template <uint value>
|
|
inline constexpr SafeConstUnwrapper<value> unbound(BoundedConst<value>) {
|
|
return SafeConstUnwrapper<value>();
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
inline constexpr T unboundAs(U value) {
|
|
return unbound(value);
|
|
}
|
|
|
|
template <uint64_t requestedMax, uint64_t maxN, typename T>
|
|
inline constexpr T unboundMax(Bounded<maxN, T> value) {
|
|
// Explicitly ungaurd expecting a value that is at most `maxN`.
|
|
static_assert(maxN <= requestedMax, "possible overflow detected");
|
|
return value.unwrap();
|
|
}
|
|
|
|
template <uint64_t requestedMax, uint value>
|
|
inline constexpr uint unboundMax(BoundedConst<value>) {
|
|
// Explicitly ungaurd expecting a value that is at most `maxN`.
|
|
static_assert(value <= requestedMax, "overflow detected");
|
|
return value;
|
|
}
|
|
|
|
template <uint bits, typename T>
|
|
inline constexpr auto unboundMaxBits(T value) ->
|
|
decltype(unboundMax<maxValueForBits<bits>()>(value)) {
|
|
// Explicitly ungaurd expecting a value that fits into `bits` bits.
|
|
return unboundMax<maxValueForBits<bits>()>(value);
|
|
}
|
|
|
|
#define OP(op) \
|
|
template <uint64_t maxN, typename T, typename U> \
|
|
inline constexpr auto operator op(T a, SafeUnwrapper<maxN, U> b) -> decltype(a op (T)b) { \
|
|
return a op (AtLeastUInt<sizeof(T)*8>)b; \
|
|
} \
|
|
template <uint64_t maxN, typename T, typename U> \
|
|
inline constexpr auto operator op(SafeUnwrapper<maxN, U> b, T a) -> decltype((T)b op a) { \
|
|
return (AtLeastUInt<sizeof(T)*8>)b op a; \
|
|
} \
|
|
template <uint64_t value, typename T> \
|
|
inline constexpr auto operator op(T a, SafeConstUnwrapper<value> b) -> decltype(a op (T)b) { \
|
|
return a op (AtLeastUInt<sizeof(T)*8>)b; \
|
|
} \
|
|
template <uint64_t value, typename T> \
|
|
inline constexpr auto operator op(SafeConstUnwrapper<value> b, T a) -> decltype((T)b op a) { \
|
|
return (AtLeastUInt<sizeof(T)*8>)b op a; \
|
|
}
|
|
|
|
OP(+)
|
|
OP(-)
|
|
OP(*)
|
|
OP(/)
|
|
OP(%)
|
|
OP(<<)
|
|
OP(>>)
|
|
OP(&)
|
|
OP(|)
|
|
OP(==)
|
|
OP(!=)
|
|
OP(<=)
|
|
OP(>=)
|
|
OP(<)
|
|
OP(>)
|
|
|
|
#undef OP
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
template <uint64_t maxN, typename T>
|
|
class Range<Bounded<maxN, T>> {
|
|
public:
|
|
inline constexpr Range(Bounded<maxN, T> begin, Bounded<maxN, T> end)
|
|
: inner(unbound(begin), unbound(end)) {}
|
|
inline explicit constexpr Range(Bounded<maxN, T> end)
|
|
: inner(unbound(end)) {}
|
|
|
|
class Iterator {
|
|
public:
|
|
Iterator() = default;
|
|
inline explicit Iterator(typename Range<T>::Iterator inner): inner(inner) {}
|
|
|
|
inline Bounded<maxN, T> operator* () const { return Bounded<maxN, T>(*inner, unsafe); }
|
|
inline Iterator& operator++() { ++inner; return *this; }
|
|
|
|
inline bool operator==(const Iterator& other) const { return inner == other.inner; }
|
|
inline bool operator!=(const Iterator& other) const { return inner != other.inner; }
|
|
|
|
private:
|
|
typename Range<T>::Iterator inner;
|
|
};
|
|
|
|
inline Iterator begin() const { return Iterator(inner.begin()); }
|
|
inline Iterator end() const { return Iterator(inner.end()); }
|
|
|
|
private:
|
|
Range<T> inner;
|
|
};
|
|
|
|
template <typename T, typename U>
|
|
class Range<Quantity<T, U>> {
|
|
public:
|
|
inline constexpr Range(Quantity<T, U> begin, Quantity<T, U> end)
|
|
: inner(begin / unit<Quantity<T, U>>(), end / unit<Quantity<T, U>>()) {}
|
|
inline explicit constexpr Range(Quantity<T, U> end)
|
|
: inner(end / unit<Quantity<T, U>>()) {}
|
|
|
|
class Iterator {
|
|
public:
|
|
Iterator() = default;
|
|
inline explicit Iterator(typename Range<T>::Iterator inner): inner(inner) {}
|
|
|
|
inline Quantity<T, U> operator* () const { return *inner * unit<Quantity<T, U>>(); }
|
|
inline Iterator& operator++() { ++inner; return *this; }
|
|
|
|
inline bool operator==(const Iterator& other) const { return inner == other.inner; }
|
|
inline bool operator!=(const Iterator& other) const { return inner != other.inner; }
|
|
|
|
private:
|
|
typename Range<T>::Iterator inner;
|
|
};
|
|
|
|
inline Iterator begin() const { return Iterator(inner.begin()); }
|
|
inline Iterator end() const { return Iterator(inner.end()); }
|
|
|
|
private:
|
|
Range<T> inner;
|
|
};
|
|
|
|
template <uint value>
|
|
inline constexpr Range<Bounded<value, uint>> zeroTo(BoundedConst<value> end) {
|
|
return Range<Bounded<value, uint>>(end);
|
|
}
|
|
|
|
template <uint value, typename Unit>
|
|
inline constexpr Range<Quantity<Bounded<value, uint>, Unit>>
|
|
zeroTo(Quantity<BoundedConst<value>, Unit> end) {
|
|
return Range<Quantity<Bounded<value, uint>, Unit>>(end);
|
|
}
|
|
|
|
} // namespace kj
|
|
|
|
#endif // KJ_UNITS_H_
|
|
|