openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

275 lines
10 KiB

#!/usr/bin/env python
import os
import zmq
import math
import json
os.environ["OMP_NUM_THREADS"] = "1"
import numpy as np
from bisect import bisect_right
from cereal import car
from common.params import Params
from common.numpy_fast import clip
import selfdrive.messaging as messaging
from selfdrive.swaglog import cloudlog
from selfdrive.controls.lib.vehicle_model import VehicleModel
from selfdrive.services import service_list
from selfdrive.locationd.kalman.loc_local_kf import LocLocalKalman
from selfdrive.locationd.kalman.kalman_helpers import ObservationKind
DEBUG = False
kf = LocLocalKalman() # Make sure that model is generated on import time
MAX_ANGLE_OFFSET = math.radians(10.)
MAX_ANGLE_OFFSET_TH = math.radians(9.)
MIN_STIFFNESS = 0.5
MAX_STIFFNESS = 2.0
MIN_SR = 0.5
MAX_SR = 2.0
MIN_SR_TH = 0.55
MAX_SR_TH = 1.9
LEARNING_RATE = 3
class Localizer(object):
def __init__(self, disabled_logs=None, dog=None):
self.kf = LocLocalKalman()
self.reset_kalman()
self.max_age = .2 # seconds
self.calibration_valid = False
if disabled_logs is None:
self.disabled_logs = list()
else:
self.disabled_logs = disabled_logs
def reset_kalman(self):
self.filter_time = None
self.observation_buffer = []
self.converter = None
self.speed_counter = 0
self.sensor_counter = 0
def liveLocationMsg(self, time):
fix = messaging.log.KalmanOdometry.new_message()
predicted_state = self.kf.x
fix.trans = [float(predicted_state[0]), float(predicted_state[1]), float(predicted_state[2])]
fix.rot = [float(predicted_state[3]), float(predicted_state[4]), float(predicted_state[5])]
return fix
def update_kalman(self, time, kind, meas):
idx = bisect_right([x[0] for x in self.observation_buffer], time)
self.observation_buffer.insert(idx, (time, kind, meas))
while self.observation_buffer[-1][0] - self.observation_buffer[0][0] > self.max_age:
self.kf.predict_and_observe(*self.observation_buffer.pop(0))
def handle_cam_odo(self, log, current_time):
self.update_kalman(current_time, ObservationKind.CAMERA_ODO_ROTATION, np.concatenate([log.cameraOdometry.rot,
log.cameraOdometry.rotStd]))
self.update_kalman(current_time, ObservationKind.CAMERA_ODO_TRANSLATION, np.concatenate([log.cameraOdometry.trans,
log.cameraOdometry.transStd]))
def handle_live100(self, log, current_time):
self.speed_counter += 1
if self.speed_counter % 5 == 0:
self.update_kalman(current_time, ObservationKind.ODOMETRIC_SPEED, np.array([log.live100.vEgo]))
def handle_sensors(self, log, current_time):
for sensor_reading in log.sensorEvents:
# TODO does not yet account for double sensor readings in the log
if sensor_reading.type == 4:
self.sensor_counter += 1
if self.sensor_counter % LEARNING_RATE == 0:
self.update_kalman(current_time, ObservationKind.PHONE_GYRO, [-sensor_reading.gyro.v[2], -sensor_reading.gyro.v[1], -sensor_reading.gyro.v[0]])
def handle_log(self, log):
current_time = 1e-9 * log.logMonoTime
typ = log.which
if typ in self.disabled_logs:
return
if typ == "sensorEvents":
self.handle_sensors(log, current_time)
elif typ == "live100":
self.handle_live100(log, current_time)
elif typ == "cameraOdometry":
self.handle_cam_odo(log, current_time)
class ParamsLearner(object):
def __init__(self, VM, angle_offset=0., stiffness_factor=1.0, steer_ratio=None, learning_rate=1.0):
self.VM = VM
self.ao = math.radians(angle_offset)
self.slow_ao = math.radians(angle_offset)
self.x = stiffness_factor
self.sR = VM.sR if steer_ratio is None else steer_ratio
self.MIN_SR = MIN_SR * self.VM.sR
self.MAX_SR = MAX_SR * self.VM.sR
self.MIN_SR_TH = MIN_SR_TH * self.VM.sR
self.MAX_SR_TH = MAX_SR_TH * self.VM.sR
self.alpha1 = 0.01 * learning_rate
self.alpha2 = 0.0005 * learning_rate
self.alpha3 = 0.1 * learning_rate
self.alpha4 = 1.0 * learning_rate
def get_values(self):
return {
'angleOffsetAverage': math.degrees(self.slow_ao),
'stiffnessFactor': self.x,
'steerRatio': self.sR,
}
def update(self, psi, u, sa):
cF0 = self.VM.cF
cR0 = self.VM.cR
aR = self.VM.aR
aF = self.VM.aF
l = self.VM.l
m = self.VM.m
x = self.x
ao = self.ao
sR = self.sR
# Gradient descent: learn angle offset, tire stiffness and steer ratio.
if u > 10.0 and abs(math.degrees(sa)) < 15.:
self.ao -= self.alpha1 * 2.0*cF0*cR0*l*u*x*(1.0*cF0*cR0*l*u*x*(ao - sa) + psi*sR*(cF0*cR0*l**2*x - m*u**2*(aF*cF0 - aR*cR0)))/(sR**2*(cF0*cR0*l**2*x - m*u**2*(aF*cF0 - aR*cR0))**2)
ao = self.slow_ao
self.slow_ao -= self.alpha2 * 2.0*cF0*cR0*l*u*x*(1.0*cF0*cR0*l*u*x*(ao - sa) + psi*sR*(cF0*cR0*l**2*x - m*u**2*(aF*cF0 - aR*cR0)))/(sR**2*(cF0*cR0*l**2*x - m*u**2*(aF*cF0 - aR*cR0))**2)
self.x -= self.alpha3 * -2.0*cF0*cR0*l*m*u**3*(ao - sa)*(aF*cF0 - aR*cR0)*(1.0*cF0*cR0*l*u*x*(ao - sa) + psi*sR*(cF0*cR0*l**2*x - m*u**2*(aF*cF0 - aR*cR0)))/(sR**2*(cF0*cR0*l**2*x - m*u**2*(aF*cF0 - aR*cR0))**3)
self.sR -= self.alpha4 * -2.0*cF0*cR0*l*u*x*(ao - sa)*(1.0*cF0*cR0*l*u*x*(ao - sa) + psi*sR*(cF0*cR0*l**2*x - m*u**2*(aF*cF0 - aR*cR0)))/(sR**3*(cF0*cR0*l**2*x - m*u**2*(aF*cF0 - aR*cR0))**2)
if DEBUG:
# s1 = "Measured yaw rate % .6f" % psi
# ao = 0.
# s2 = "Uncompensated yaw % .6f" % (1.0*u*(-ao + sa)/(l*sR*(1 - m*u**2*(aF*cF0*x - aR*cR0*x)/(cF0*cR0*l**2*x**2))))
# instant_ao = aF*m*psi*sR*u/(cR0*l*x) - aR*m*psi*sR*u/(cF0*l*x) - l*psi*sR/u + sa
s4 = "Instant AO: % .2f Avg. AO % .2f" % (math.degrees(self.ao), math.degrees(self.slow_ao))
s5 = "Stiffnes: % .3f x" % self.x
print("{0} {1}".format(s4, s5))
self.ao = clip(self.ao, -MAX_ANGLE_OFFSET, MAX_ANGLE_OFFSET)
self.slow_ao = clip(self.slow_ao, -MAX_ANGLE_OFFSET, MAX_ANGLE_OFFSET)
self.x = clip(self.x, MIN_STIFFNESS, MAX_STIFFNESS)
self.sR = clip(self.sR, self.MIN_SR, self.MAX_SR)
# don't check stiffness for validity, as it can change quickly if sR is off
valid = abs(self.slow_ao) < MAX_ANGLE_OFFSET_TH and \
self.sR > self.MIN_SR_TH and self.sR < self.MAX_SR_TH
return valid
def locationd_thread(gctx, addr, disabled_logs):
ctx = zmq.Context()
poller = zmq.Poller()
live100_socket = messaging.sub_sock(ctx, service_list['live100'].port, poller, addr=addr, conflate=True)
sensor_events_socket = messaging.sub_sock(ctx, service_list['sensorEvents'].port, poller, addr=addr, conflate=True)
camera_odometry_socket = messaging.sub_sock(ctx, service_list['cameraOdometry'].port, poller, addr=addr, conflate=True)
kalman_odometry_socket = messaging.pub_sock(ctx, service_list['kalmanOdometry'].port)
live_parameters_socket = messaging.pub_sock(ctx, service_list['liveParameters'].port)
params_reader = Params()
cloudlog.info("Parameter learner is waiting for CarParams")
CP = car.CarParams.from_bytes(params_reader.get("CarParams", block=True))
VM = VehicleModel(CP)
cloudlog.info("Parameter learner got CarParams: %s" % CP.carFingerprint)
params = params_reader.get("LiveParameters")
# Check if car model matches
if params is not None:
params = json.loads(params)
if params.get('carFingerprint', None) != CP.carFingerprint:
cloudlog.info("Parameter learner found parameters for wrong car.")
params = None
if params is None:
params = {
'carFingerprint': CP.carFingerprint,
'angleOffsetAverage': 0.0,
'stiffnessFactor': 1.0,
'steerRatio': VM.sR,
}
cloudlog.info("Parameter learner resetting to default values")
cloudlog.info("Parameter starting with: %s" % str(params))
localizer = Localizer(disabled_logs=disabled_logs)
learner = ParamsLearner(VM,
angle_offset=params['angleOffsetAverage'],
stiffness_factor=params['stiffnessFactor'],
steer_ratio=params['steerRatio'],
learning_rate=LEARNING_RATE)
i = 0
while True:
for socket, event in poller.poll(timeout=1000):
log = messaging.recv_one(socket)
localizer.handle_log(log)
if socket is live100_socket:
if not localizer.kf.t:
continue
if i % LEARNING_RATE == 0:
# live100 is not updating the Kalman Filter, so update KF manually
localizer.kf.predict(1e-9 * log.logMonoTime)
predicted_state = localizer.kf.x
yaw_rate = -float(predicted_state[5])
steering_angle = math.radians(log.live100.angleSteers)
params_valid = learner.update(yaw_rate, log.live100.vEgo, steering_angle)
params = messaging.new_message()
params.init('liveParameters')
params.liveParameters.valid = bool(params_valid)
params.liveParameters.angleOffset = float(math.degrees(learner.ao))
params.liveParameters.angleOffsetAverage = float(math.degrees(learner.slow_ao))
params.liveParameters.stiffnessFactor = float(learner.x)
params.liveParameters.steerRatio = float(learner.sR)
live_parameters_socket.send(params.to_bytes())
if i % 6000 == 0: # once a minute
params = learner.get_values()
params['carFingerprint'] = CP.carFingerprint
params_reader.put("LiveParameters", json.dumps(params))
params_reader.put("ControlsParams", json.dumps({'angle_model_bias': log.live100.angleModelBias}))
i += 1
elif socket is camera_odometry_socket:
msg = messaging.new_message()
msg.init('kalmanOdometry')
msg.logMonoTime = log.logMonoTime
msg.kalmanOdometry = localizer.liveLocationMsg(log.logMonoTime * 1e-9)
kalman_odometry_socket.send(msg.to_bytes())
elif socket is sensor_events_socket:
pass
def main(gctx=None, addr="127.0.0.1"):
IN_CAR = os.getenv("IN_CAR", False)
disabled_logs = os.getenv("DISABLED_LOGS", "").split(",")
# No speed for now
disabled_logs.append('live100')
if IN_CAR:
addr = "192.168.5.11"
locationd_thread(gctx, addr, disabled_logs)
if __name__ == "__main__":
main()