openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

158 lines
5.5 KiB

#!/usr/bin/env python3
import os
import numpy as np
import common.transformations.orientation as orient
from selfdrive.locationd.kalman.helpers import (TEMPLATE_DIR, load_code,
write_code)
from selfdrive.locationd.kalman.helpers.sympy_helpers import quat_matrix_l
def sane(track):
img_pos = track[1:, 2:4]
diffs_x = abs(img_pos[1:, 0] - img_pos[:-1, 0])
diffs_y = abs(img_pos[1:, 1] - img_pos[:-1, 1])
for i in range(1, len(diffs_x)):
if ((diffs_x[i] > 0.05 or diffs_x[i - 1] > 0.05) and
(diffs_x[i] > 2 * diffs_x[i - 1] or
diffs_x[i] < .5 * diffs_x[i - 1])) or \
((diffs_y[i] > 0.05 or diffs_y[i - 1] > 0.05) and
(diffs_y[i] > 2 * diffs_y[i - 1] or
diffs_y[i] < .5 * diffs_y[i - 1])):
return False
return True
class FeatureHandler():
name = 'feature_handler'
@staticmethod
def generate_code(K=5):
# Wrap c code for slow matching
c_header = "\nvoid merge_features(double *tracks, double *features, long long *empty_idxs);"
c_code = "#include <math.h>\n"
c_code += "#include <string.h>\n"
c_code += "#define K %d\n" % K
c_code += "\n" + open(os.path.join(TEMPLATE_DIR, "feature_handler.c")).read()
filename = f"{FeatureHandler.name}_{K}"
write_code(filename, c_code, c_header)
def __init__(self, K=5):
self.MAX_TRACKS = 6000
self.K = K
# Array of tracks, each track has K 5D features preceded
# by 5 params that inidicate [f_idx, last_idx, updated, complete, valid]
# f_idx: idx of current last feature in track
# idx of of last feature in frame
# bool for whether this track has been update
# bool for whether this track is complete
# bool for whether this track is valid
self.tracks = np.zeros((self.MAX_TRACKS, K + 1, 5))
self.tracks[:] = np.nan
name = f"{FeatureHandler.name}_{K}"
ffi, lib = load_code(name)
def merge_features_c(tracks, features, empty_idxs):
lib.merge_features(ffi.cast("double *", tracks.ctypes.data),
ffi.cast("double *", features.ctypes.data),
ffi.cast("long long *", empty_idxs.ctypes.data))
# self.merge_features = self.merge_features_python
self.merge_features = merge_features_c
def reset(self):
self.tracks[:] = np.nan
def merge_features_python(self, tracks, features, empty_idxs):
empty_idx = 0
for f in features:
match_idx = int(f[4])
if tracks[match_idx, 0, 1] == match_idx and tracks[match_idx, 0, 2] == 0:
tracks[match_idx, 0, 0] += 1
tracks[match_idx, 0, 1] = f[1]
tracks[match_idx, 0, 2] = 1
tracks[match_idx, int(tracks[match_idx, 0, 0])] = f
if tracks[match_idx, 0, 0] == self.K:
tracks[match_idx, 0, 3] = 1
if sane(tracks[match_idx]):
tracks[match_idx, 0, 4] = 1
else:
if empty_idx == len(empty_idxs):
print('need more empty space')
continue
tracks[empty_idxs[empty_idx], 0, 0] = 1
tracks[empty_idxs[empty_idx], 0, 1] = f[1]
tracks[empty_idxs[empty_idx], 0, 2] = 1
tracks[empty_idxs[empty_idx], 1] = f
empty_idx += 1
def update_tracks(self, features):
last_idxs = np.copy(self.tracks[:, 0, 1])
real = np.isfinite(last_idxs)
self.tracks[last_idxs[real].astype(int)] = self.tracks[real]
mask = np.ones(self.MAX_TRACKS, np.bool)
mask[last_idxs[real].astype(int)] = 0
empty_idxs = np.arange(self.MAX_TRACKS)[mask]
self.tracks[empty_idxs] = np.nan
self.tracks[:, 0, 2] = 0
self.merge_features(self.tracks, features, empty_idxs)
def handle_features(self, features):
self.update_tracks(features)
valid_idxs = self.tracks[:, 0, 4] == 1
complete_idxs = self.tracks[:, 0, 3] == 1
stale_idxs = self.tracks[:, 0, 2] == 0
valid_tracks = self.tracks[valid_idxs]
self.tracks[complete_idxs] = np.nan
self.tracks[stale_idxs] = np.nan
return valid_tracks[:, 1:, :4].reshape((len(valid_tracks), self.K * 4))
def generate_orient_error_jac(K):
import sympy as sp
from common.sympy_helpers import quat_rotate
x_sym = sp.MatrixSymbol('abr', 3, 1)
dtheta = sp.MatrixSymbol('dtheta', 3, 1)
delta_quat = sp.Matrix(np.ones(4))
delta_quat[1:, :] = sp.Matrix(0.5 * dtheta[0:3, :])
poses_sym = sp.MatrixSymbol('poses', 7 * K, 1)
img_pos_sym = sp.MatrixSymbol('img_positions', 2 * K, 1)
alpha, beta, rho = x_sym
to_c = sp.Matrix(orient.rot_matrix(-np.pi / 2, -np.pi / 2, 0))
pos_0 = sp.Matrix(np.array(poses_sym[K * 7 - 7:K * 7 - 4])[:, 0])
q = quat_matrix_l(poses_sym[K * 7 - 4:K * 7]) * delta_quat
quat_rot = quat_rotate(*q)
rot_g_to_0 = to_c * quat_rot.T
rows = []
for i in range(K):
pos_i = sp.Matrix(np.array(poses_sym[i * 7:i * 7 + 3])[:, 0])
q = quat_matrix_l(poses_sym[7 * i + 3:7 * i + 7]) * delta_quat
quat_rot = quat_rotate(*q)
rot_g_to_i = to_c * quat_rot.T
rot_0_to_i = rot_g_to_i * (rot_g_to_0.T)
trans_0_to_i = rot_g_to_i * (pos_0 - pos_i)
funct_vec = rot_0_to_i * sp.Matrix([alpha, beta, 1]) + rho * trans_0_to_i
h1, h2, h3 = funct_vec
rows.append(h1 / h3 - img_pos_sym[i * 2 + 0])
rows.append(h2 / h3 - img_pos_sym[i * 2 + 1])
img_pos_residual_sym = sp.Matrix(rows)
# sympy into c
sympy_functions = []
sympy_functions.append(('orient_error_jac', img_pos_residual_sym.jacobian(dtheta), [x_sym, poses_sym, img_pos_sym, dtheta]))
return sympy_functions
if __name__ == "__main__":
# TODO: get K from argparse
FeatureHandler.generate_code()