You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							158 lines
						
					
					
						
							5.7 KiB
						
					
					
				
			
		
		
	
	
							158 lines
						
					
					
						
							5.7 KiB
						
					
					
				| # functions common among cars
 | |
| import capnp
 | |
| 
 | |
| from cereal import car
 | |
| from common.numpy_fast import clip
 | |
| from typing import Dict
 | |
| 
 | |
| # kg of standard extra cargo to count for drive, gas, etc...
 | |
| STD_CARGO_KG = 136.
 | |
| 
 | |
| ButtonType = car.CarState.ButtonEvent.Type
 | |
| EventName = car.CarEvent.EventName
 | |
| 
 | |
| 
 | |
| def apply_hysteresis(val: float, val_steady: float, hyst_gap: float) -> float:
 | |
|   if val > val_steady + hyst_gap:
 | |
|     val_steady = val - hyst_gap
 | |
|   elif val < val_steady - hyst_gap:
 | |
|     val_steady = val + hyst_gap
 | |
|   return val_steady
 | |
| 
 | |
| 
 | |
| def create_button_event(cur_but: int, prev_but: int, buttons_dict: Dict[int, capnp.lib.capnp._EnumModule],
 | |
|                         unpressed: int = 0) -> capnp.lib.capnp._DynamicStructBuilder:
 | |
|   if cur_but != unpressed:
 | |
|     be = car.CarState.ButtonEvent(pressed=True)
 | |
|     but = cur_but
 | |
|   else:
 | |
|     be = car.CarState.ButtonEvent(pressed=False)
 | |
|     but = prev_but
 | |
|   be.type = buttons_dict.get(but, ButtonType.unknown)
 | |
|   return be
 | |
| 
 | |
| 
 | |
| def gen_empty_fingerprint():
 | |
|   return {i: {} for i in range(0, 8)}
 | |
| 
 | |
| 
 | |
| # FIXME: hardcoding honda civic 2016 touring params so they can be used to
 | |
| # scale unknown params for other cars
 | |
| class CivicParams:
 | |
|   MASS = 1326. + STD_CARGO_KG
 | |
|   WHEELBASE = 2.70
 | |
|   CENTER_TO_FRONT = WHEELBASE * 0.4
 | |
|   CENTER_TO_REAR = WHEELBASE - CENTER_TO_FRONT
 | |
|   ROTATIONAL_INERTIA = 2500
 | |
|   TIRE_STIFFNESS_FRONT = 192150
 | |
|   TIRE_STIFFNESS_REAR = 202500
 | |
| 
 | |
| 
 | |
| # TODO: get actual value, for now starting with reasonable value for
 | |
| # civic and scaling by mass and wheelbase
 | |
| def scale_rot_inertia(mass, wheelbase):
 | |
|   return CivicParams.ROTATIONAL_INERTIA * mass * wheelbase ** 2 / (CivicParams.MASS * CivicParams.WHEELBASE ** 2)
 | |
| 
 | |
| 
 | |
| # TODO: start from empirically derived lateral slip stiffness for the civic and scale by
 | |
| # mass and CG position, so all cars will have approximately similar dyn behaviors
 | |
| def scale_tire_stiffness(mass, wheelbase, center_to_front, tire_stiffness_factor=1.0):
 | |
|   center_to_rear = wheelbase - center_to_front
 | |
|   tire_stiffness_front = (CivicParams.TIRE_STIFFNESS_FRONT * tire_stiffness_factor) * mass / CivicParams.MASS * \
 | |
|                          (center_to_rear / wheelbase) / (CivicParams.CENTER_TO_REAR / CivicParams.WHEELBASE)
 | |
| 
 | |
|   tire_stiffness_rear = (CivicParams.TIRE_STIFFNESS_REAR * tire_stiffness_factor) * mass / CivicParams.MASS * \
 | |
|                         (center_to_front / wheelbase) / (CivicParams.CENTER_TO_FRONT / CivicParams.WHEELBASE)
 | |
| 
 | |
|   return tire_stiffness_front, tire_stiffness_rear
 | |
| 
 | |
| 
 | |
| def dbc_dict(pt_dbc, radar_dbc, chassis_dbc=None, body_dbc=None) -> Dict[str, str]:
 | |
|   return {'pt': pt_dbc, 'radar': radar_dbc, 'chassis': chassis_dbc, 'body': body_dbc}
 | |
| 
 | |
| 
 | |
| def apply_std_steer_torque_limits(apply_torque, apply_torque_last, driver_torque, LIMITS):
 | |
| 
 | |
|   # limits due to driver torque
 | |
|   driver_max_torque = LIMITS.STEER_MAX + (LIMITS.STEER_DRIVER_ALLOWANCE + driver_torque * LIMITS.STEER_DRIVER_FACTOR) * LIMITS.STEER_DRIVER_MULTIPLIER
 | |
|   driver_min_torque = -LIMITS.STEER_MAX + (-LIMITS.STEER_DRIVER_ALLOWANCE + driver_torque * LIMITS.STEER_DRIVER_FACTOR) * LIMITS.STEER_DRIVER_MULTIPLIER
 | |
|   max_steer_allowed = max(min(LIMITS.STEER_MAX, driver_max_torque), 0)
 | |
|   min_steer_allowed = min(max(-LIMITS.STEER_MAX, driver_min_torque), 0)
 | |
|   apply_torque = clip(apply_torque, min_steer_allowed, max_steer_allowed)
 | |
| 
 | |
|   # slow rate if steer torque increases in magnitude
 | |
|   if apply_torque_last > 0:
 | |
|     apply_torque = clip(apply_torque, max(apply_torque_last - LIMITS.STEER_DELTA_DOWN, -LIMITS.STEER_DELTA_UP),
 | |
|                         apply_torque_last + LIMITS.STEER_DELTA_UP)
 | |
|   else:
 | |
|     apply_torque = clip(apply_torque, apply_torque_last - LIMITS.STEER_DELTA_UP,
 | |
|                         min(apply_torque_last + LIMITS.STEER_DELTA_DOWN, LIMITS.STEER_DELTA_UP))
 | |
| 
 | |
|   return int(round(float(apply_torque)))
 | |
| 
 | |
| 
 | |
| def apply_toyota_steer_torque_limits(apply_torque, apply_torque_last, motor_torque, LIMITS):
 | |
|   # limits due to comparison of commanded torque VS motor reported torque
 | |
|   max_lim = min(max(motor_torque + LIMITS.STEER_ERROR_MAX, LIMITS.STEER_ERROR_MAX), LIMITS.STEER_MAX)
 | |
|   min_lim = max(min(motor_torque - LIMITS.STEER_ERROR_MAX, -LIMITS.STEER_ERROR_MAX), -LIMITS.STEER_MAX)
 | |
| 
 | |
|   apply_torque = clip(apply_torque, min_lim, max_lim)
 | |
| 
 | |
|   # slow rate if steer torque increases in magnitude
 | |
|   if apply_torque_last > 0:
 | |
|     apply_torque = clip(apply_torque,
 | |
|                         max(apply_torque_last - LIMITS.STEER_DELTA_DOWN, -LIMITS.STEER_DELTA_UP),
 | |
|                         apply_torque_last + LIMITS.STEER_DELTA_UP)
 | |
|   else:
 | |
|     apply_torque = clip(apply_torque,
 | |
|                         apply_torque_last - LIMITS.STEER_DELTA_UP,
 | |
|                         min(apply_torque_last + LIMITS.STEER_DELTA_DOWN, LIMITS.STEER_DELTA_UP))
 | |
| 
 | |
|   return int(round(float(apply_torque)))
 | |
| 
 | |
| 
 | |
| def crc8_pedal(data):
 | |
|   crc = 0xFF    # standard init value
 | |
|   poly = 0xD5   # standard crc8: x8+x7+x6+x4+x2+1
 | |
|   size = len(data)
 | |
|   for i in range(size - 1, -1, -1):
 | |
|     crc ^= data[i]
 | |
|     for _ in range(8):
 | |
|       if ((crc & 0x80) != 0):
 | |
|         crc = ((crc << 1) ^ poly) & 0xFF
 | |
|       else:
 | |
|         crc <<= 1
 | |
|   return crc
 | |
| 
 | |
| 
 | |
| def create_gas_interceptor_command(packer, gas_amount, idx):
 | |
|   # Common gas pedal msg generator
 | |
|   enable = gas_amount > 0.001
 | |
| 
 | |
|   values = {
 | |
|     "ENABLE": enable,
 | |
|     "COUNTER_PEDAL": idx & 0xF,
 | |
|   }
 | |
| 
 | |
|   if enable:
 | |
|     values["GAS_COMMAND"] = gas_amount * 255.
 | |
|     values["GAS_COMMAND2"] = gas_amount * 255.
 | |
| 
 | |
|   dat = packer.make_can_msg("GAS_COMMAND", 0, values)[2]
 | |
| 
 | |
|   checksum = crc8_pedal(dat[:-1])
 | |
|   values["CHECKSUM_PEDAL"] = checksum
 | |
| 
 | |
|   return packer.make_can_msg("GAS_COMMAND", 0, values)
 | |
| 
 | |
| 
 | |
| def make_can_msg(addr, dat, bus):
 | |
|   return [addr, 0, dat, bus]
 | |
| 
 | |
| 
 | |
| def get_safety_config(safety_model, safety_param = None):
 | |
|   ret = car.CarParams.SafetyConfig.new_message()
 | |
|   ret.safetyModel = safety_model
 | |
|   if safety_param is not None:
 | |
|     ret.safetyParam = safety_param
 | |
|   return ret
 | |
| 
 |