You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							120 lines
						
					
					
						
							5.3 KiB
						
					
					
				
			
		
		
	
	
							120 lines
						
					
					
						
							5.3 KiB
						
					
					
				import numpy as np
 | 
						|
from openpilot.selfdrive.modeld.constants import ModelConstants
 | 
						|
 | 
						|
def safe_exp(x, out=None):
 | 
						|
  # -11 is around 10**14, more causes float16 overflow
 | 
						|
  return np.exp(np.clip(x, -np.inf, 11), out=out)
 | 
						|
 | 
						|
def sigmoid(x):
 | 
						|
  return 1. / (1. + safe_exp(-x))
 | 
						|
 | 
						|
def softmax(x, axis=-1):
 | 
						|
  x -= np.max(x, axis=axis, keepdims=True)
 | 
						|
  if x.dtype == np.float32 or x.dtype == np.float64:
 | 
						|
    safe_exp(x, out=x)
 | 
						|
  else:
 | 
						|
    x = safe_exp(x)
 | 
						|
  x /= np.sum(x, axis=axis, keepdims=True)
 | 
						|
  return x
 | 
						|
 | 
						|
class Parser:
 | 
						|
  def __init__(self, ignore_missing=False):
 | 
						|
    self.ignore_missing = ignore_missing
 | 
						|
 | 
						|
  def check_missing(self, outs, name):
 | 
						|
    if name not in outs and not self.ignore_missing:
 | 
						|
      raise ValueError(f"Missing output {name}")
 | 
						|
    return name not in outs
 | 
						|
 | 
						|
  def parse_categorical_crossentropy(self, name, outs, out_shape=None):
 | 
						|
    if self.check_missing(outs, name):
 | 
						|
      return
 | 
						|
    raw = outs[name]
 | 
						|
    if out_shape is not None:
 | 
						|
      raw = raw.reshape((raw.shape[0],) + out_shape)
 | 
						|
    outs[name] = softmax(raw, axis=-1)
 | 
						|
 | 
						|
  def parse_binary_crossentropy(self, name, outs):
 | 
						|
    if self.check_missing(outs, name):
 | 
						|
      return
 | 
						|
    raw = outs[name]
 | 
						|
    outs[name] = sigmoid(raw)
 | 
						|
 | 
						|
  def parse_mdn(self, name, outs, in_N=0, out_N=1, out_shape=None):
 | 
						|
    if self.check_missing(outs, name):
 | 
						|
      return
 | 
						|
    raw = outs[name]
 | 
						|
    raw = raw.reshape((raw.shape[0], max(in_N, 1), -1))
 | 
						|
 | 
						|
    n_values = (raw.shape[2] - out_N)//2
 | 
						|
    pred_mu = raw[:,:,:n_values]
 | 
						|
    pred_std = safe_exp(raw[:,:,n_values: 2*n_values])
 | 
						|
 | 
						|
    if in_N > 1:
 | 
						|
      weights = np.zeros((raw.shape[0], in_N, out_N), dtype=raw.dtype)
 | 
						|
      for i in range(out_N):
 | 
						|
        weights[:,:,i - out_N] = softmax(raw[:,:,i - out_N], axis=-1)
 | 
						|
 | 
						|
      if out_N == 1:
 | 
						|
        for fidx in range(weights.shape[0]):
 | 
						|
          idxs = np.argsort(weights[fidx][:,0])[::-1]
 | 
						|
          weights[fidx] = weights[fidx][idxs]
 | 
						|
          pred_mu[fidx] = pred_mu[fidx][idxs]
 | 
						|
          pred_std[fidx] = pred_std[fidx][idxs]
 | 
						|
      full_shape = tuple([raw.shape[0], in_N] + list(out_shape))
 | 
						|
      outs[name + '_weights'] = weights
 | 
						|
      outs[name + '_hypotheses'] = pred_mu.reshape(full_shape)
 | 
						|
      outs[name + '_stds_hypotheses'] = pred_std.reshape(full_shape)
 | 
						|
 | 
						|
      pred_mu_final = np.zeros((raw.shape[0], out_N, n_values), dtype=raw.dtype)
 | 
						|
      pred_std_final = np.zeros((raw.shape[0], out_N, n_values), dtype=raw.dtype)
 | 
						|
      for fidx in range(weights.shape[0]):
 | 
						|
        for hidx in range(out_N):
 | 
						|
          idxs = np.argsort(weights[fidx,:,hidx])[::-1]
 | 
						|
          pred_mu_final[fidx, hidx] = pred_mu[fidx, idxs[0]]
 | 
						|
          pred_std_final[fidx, hidx] = pred_std[fidx, idxs[0]]
 | 
						|
    else:
 | 
						|
      pred_mu_final = pred_mu
 | 
						|
      pred_std_final = pred_std
 | 
						|
 | 
						|
    if out_N > 1:
 | 
						|
      final_shape = tuple([raw.shape[0], out_N] + list(out_shape))
 | 
						|
    else:
 | 
						|
      final_shape = tuple([raw.shape[0],] + list(out_shape))
 | 
						|
    outs[name] = pred_mu_final.reshape(final_shape)
 | 
						|
    outs[name + '_stds'] = pred_std_final.reshape(final_shape)
 | 
						|
 | 
						|
  def parse_vision_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]:
 | 
						|
    self.parse_mdn('pose', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
 | 
						|
    self.parse_mdn('wide_from_device_euler', outs, in_N=0, out_N=0, out_shape=(ModelConstants.WIDE_FROM_DEVICE_WIDTH,))
 | 
						|
    self.parse_mdn('road_transform', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
 | 
						|
    self.parse_mdn('lane_lines', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_LANE_LINES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH))
 | 
						|
    self.parse_mdn('road_edges', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_ROAD_EDGES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH))
 | 
						|
    self.parse_binary_crossentropy('lane_lines_prob', outs)
 | 
						|
    self.parse_categorical_crossentropy('desire_pred', outs, out_shape=(ModelConstants.DESIRE_PRED_LEN,ModelConstants.DESIRE_PRED_WIDTH))
 | 
						|
    self.parse_binary_crossentropy('meta', outs)
 | 
						|
    self.parse_binary_crossentropy('lead_prob', outs)
 | 
						|
    if outs['lead'].shape[1] == 2 * ModelConstants.LEAD_MHP_SELECTION *ModelConstants.LEAD_TRAJ_LEN * ModelConstants.LEAD_WIDTH:
 | 
						|
      self.parse_mdn('lead', outs, in_N=0, out_N=0,
 | 
						|
                     out_shape=(ModelConstants.LEAD_MHP_SELECTION, ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH))
 | 
						|
    else:
 | 
						|
      self.parse_mdn('lead', outs, in_N=ModelConstants.LEAD_MHP_N, out_N=ModelConstants.LEAD_MHP_SELECTION,
 | 
						|
                   out_shape=(ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH))
 | 
						|
    return outs
 | 
						|
 | 
						|
  def parse_policy_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]:
 | 
						|
    if outs['plan'].shape[1] == 2 * ModelConstants.IDX_N * ModelConstants.PLAN_WIDTH:
 | 
						|
      self.parse_mdn('plan', outs, in_N=0, out_N=0,
 | 
						|
                     out_shape=(ModelConstants.IDX_N,ModelConstants.PLAN_WIDTH))
 | 
						|
    else:
 | 
						|
      self.parse_mdn('plan', outs, in_N=ModelConstants.PLAN_MHP_N, out_N=ModelConstants.PLAN_MHP_SELECTION,
 | 
						|
                     out_shape=(ModelConstants.IDX_N,ModelConstants.PLAN_WIDTH))
 | 
						|
    if 'desired_curvature' in outs:
 | 
						|
      self.parse_mdn('desired_curvature', outs, in_N=0, out_N=0, out_shape=(ModelConstants.DESIRED_CURV_WIDTH,))
 | 
						|
    self.parse_categorical_crossentropy('desire_state', outs, out_shape=(ModelConstants.DESIRE_PRED_WIDTH,))
 | 
						|
    return outs
 | 
						|
 | 
						|
  def parse_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]:
 | 
						|
    outs = self.parse_vision_outputs(outs)
 | 
						|
    outs = self.parse_policy_outputs(outs)
 | 
						|
    return outs
 | 
						|
 |