openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

289 lines
10 KiB

#include "selfdrive/ui/ui.h"
#include <algorithm>
#include <cmath>
#include <QtConcurrent>
#include "common/transformations/orientation.hpp"
#include "common/swaglog.h"
#include "common/util.h"
#include "common/watchdog.h"
#include "system/hardware/hw.h"
#define BACKLIGHT_DT 0.05
#define BACKLIGHT_TS 10.00
// Projects a point in car to space to the corresponding point in full frame
// image space.
static bool calib_frame_to_full_frame(const UIState *s, float in_x, float in_y, float in_z, QPointF *out) {
Eigen::Vector3f input(in_x, in_y, in_z);
auto transformed = s->car_space_transform * input;
*out = QPointF(transformed.x() / transformed.z(), transformed.y() / transformed.z());
return s->clip_region.contains(*out);
}
int get_path_length_idx(const cereal::XYZTData::Reader &line, const float path_height) {
const auto line_x = line.getX();
int max_idx = 0;
for (int i = 1; i < line_x.size() && line_x[i] <= path_height; ++i) {
max_idx = i;
}
return max_idx;
}
void update_leads(UIState *s, const cereal::RadarState::Reader &radar_state, const cereal::XYZTData::Reader &line) {
for (int i = 0; i < 2; ++i) {
auto lead_data = (i == 0) ? radar_state.getLeadOne() : radar_state.getLeadTwo();
if (lead_data.getStatus()) {
float z = line.getZ()[get_path_length_idx(line, lead_data.getDRel())];
calib_frame_to_full_frame(s, lead_data.getDRel(), -lead_data.getYRel(), z + 1.22, &s->scene.lead_vertices[i]);
}
}
}
void update_line_data(const UIState *s, const cereal::XYZTData::Reader &line,
float y_off, float z_off, QPolygonF *pvd, int max_idx, bool allow_invert=true) {
const auto line_x = line.getX(), line_y = line.getY(), line_z = line.getZ();
QPointF left, right;
pvd->clear();
for (int i = 0; i <= max_idx; i++) {
// highly negative x positions are drawn above the frame and cause flickering, clip to zy plane of camera
if (line_x[i] < 0) continue;
bool l = calib_frame_to_full_frame(s, line_x[i], line_y[i] - y_off, line_z[i] + z_off, &left);
bool r = calib_frame_to_full_frame(s, line_x[i], line_y[i] + y_off, line_z[i] + z_off, &right);
if (l && r) {
// For wider lines the drawn polygon will "invert" when going over a hill and cause artifacts
if (!allow_invert && pvd->size() && left.y() > pvd->back().y()) {
continue;
}
pvd->push_back(left);
pvd->push_front(right);
}
}
}
void update_model(UIState *s,
const cereal::ModelDataV2::Reader &model) {
UIScene &scene = s->scene;
auto model_position = model.getPosition();
float max_distance = std::clamp(*(model_position.getX().end() - 1),
MIN_DRAW_DISTANCE, MAX_DRAW_DISTANCE);
// update lane lines
const auto lane_lines = model.getLaneLines();
const auto lane_line_probs = model.getLaneLineProbs();
int max_idx = get_path_length_idx(lane_lines[0], max_distance);
for (int i = 0; i < std::size(scene.lane_line_vertices); i++) {
scene.lane_line_probs[i] = lane_line_probs[i];
update_line_data(s, lane_lines[i], 0.025 * scene.lane_line_probs[i], 0, &scene.lane_line_vertices[i], max_idx);
}
// update road edges
const auto road_edges = model.getRoadEdges();
const auto road_edge_stds = model.getRoadEdgeStds();
for (int i = 0; i < std::size(scene.road_edge_vertices); i++) {
scene.road_edge_stds[i] = road_edge_stds[i];
update_line_data(s, road_edges[i], 0.025, 0, &scene.road_edge_vertices[i], max_idx);
}
// update path
auto lead_one = (*s->sm)["radarState"].getRadarState().getLeadOne();
if (lead_one.getStatus()) {
const float lead_d = lead_one.getDRel() * 2.;
max_distance = std::clamp((float)(lead_d - fmin(lead_d * 0.35, 10.)), 0.0f, max_distance);
}
max_idx = get_path_length_idx(model_position, max_distance);
update_line_data(s, model_position, 0.9, 1.22, &scene.track_vertices, max_idx, false);
}
static void update_sockets(UIState *s) {
s->sm->update(0);
}
static void update_state(UIState *s) {
SubMaster &sm = *(s->sm);
UIScene &scene = s->scene;
if (sm.updated("liveCalibration")) {
auto list2rot = [](const capnp::List<float>::Reader &rpy_list) ->Eigen::Matrix3f {
return euler2rot({rpy_list[0], rpy_list[1], rpy_list[2]}).cast<float>();
};
auto live_calib = sm["liveCalibration"].getLiveCalibration();
if (live_calib.getCalStatus() == cereal::LiveCalibrationData::Status::CALIBRATED) {
auto device_from_calib = list2rot(live_calib.getRpyCalib());
auto wide_from_device = list2rot(live_calib.getWideFromDeviceEuler());
s->scene.view_from_calib = VIEW_FROM_DEVICE * device_from_calib;
s->scene.view_from_wide_calib = VIEW_FROM_DEVICE * wide_from_device * device_from_calib;
} else {
s->scene.view_from_calib = s->scene.view_from_wide_calib = VIEW_FROM_DEVICE;
}
}
if (sm.updated("pandaStates")) {
auto pandaStates = sm["pandaStates"].getPandaStates();
if (pandaStates.size() > 0) {
scene.pandaType = pandaStates[0].getPandaType();
if (scene.pandaType != cereal::PandaState::PandaType::UNKNOWN) {
scene.ignition = false;
for (const auto& pandaState : pandaStates) {
scene.ignition |= pandaState.getIgnitionLine() || pandaState.getIgnitionCan();
}
}
}
} else if ((s->sm->frame - s->sm->rcv_frame("pandaStates")) > 5*UI_FREQ) {
scene.pandaType = cereal::PandaState::PandaType::UNKNOWN;
}
if (sm.updated("carParams")) {
scene.longitudinal_control = sm["carParams"].getCarParams().getOpenpilotLongitudinalControl();
}
if (sm.updated("wideRoadCameraState")) {
auto cam_state = sm["wideRoadCameraState"].getWideRoadCameraState();
float scale = (cam_state.getSensor() == cereal::FrameData::ImageSensor::AR0231) ? 6.0f : 1.0f;
scene.light_sensor = std::max(100.0f - scale * cam_state.getExposureValPercent(), 0.0f);
} else if (!sm.allAliveAndValid({"wideRoadCameraState"})) {
scene.light_sensor = -1;
}
scene.started = sm["deviceState"].getDeviceState().getStarted() && scene.ignition;
scene.world_objects_visible = scene.world_objects_visible ||
(scene.started &&
sm.rcv_frame("liveCalibration") > scene.started_frame &&
sm.rcv_frame("modelV2") > scene.started_frame);
}
void ui_update_params(UIState *s) {
auto params = Params();
s->scene.is_metric = params.getBool("IsMetric");
}
void UIState::updateStatus() {
if (scene.started && sm->updated("selfdriveState")) {
auto ss = (*sm)["selfdriveState"].getSelfdriveState();
auto state = ss .getState();
if (state == cereal::SelfdriveState::OpenpilotState::PRE_ENABLED || state == cereal::SelfdriveState::OpenpilotState::OVERRIDING) {
status = STATUS_OVERRIDE;
} else {
status = ss.getEnabled() ? STATUS_ENGAGED : STATUS_DISENGAGED;
}
}
// Handle onroad/offroad transition
if (scene.started != started_prev || sm->frame == 1) {
if (scene.started) {
status = STATUS_DISENGAGED;
scene.started_frame = sm->frame;
}
started_prev = scene.started;
scene.world_objects_visible = false;
emit offroadTransition(!scene.started);
}
}
UIState::UIState(QObject *parent) : QObject(parent) {
sm = std::make_unique<SubMaster>(std::vector<const char*>{
"modelV2", "controlsState", "liveCalibration", "radarState", "deviceState",
"pandaStates", "carParams", "driverMonitoringState", "carState", "driverStateV2",
"wideRoadCameraState", "managerState", "selfdriveState",
});
prime_state = new PrimeState(this);
language = QString::fromStdString(Params().get("LanguageSetting"));
// update timer
timer = new QTimer(this);
QObject::connect(timer, &QTimer::timeout, this, &UIState::update);
timer->start(1000 / UI_FREQ);
}
void UIState::update() {
update_sockets(this);
update_state(this);
updateStatus();
if (sm->frame % UI_FREQ == 0) {
watchdog_kick(nanos_since_boot());
}
emit uiUpdate(*this);
}
Device::Device(QObject *parent) : brightness_filter(BACKLIGHT_OFFROAD, BACKLIGHT_TS, BACKLIGHT_DT), QObject(parent) {
setAwake(true);
resetInteractiveTimeout();
QObject::connect(uiState(), &UIState::uiUpdate, this, &Device::update);
}
void Device::update(const UIState &s) {
updateBrightness(s);
updateWakefulness(s);
}
void Device::setAwake(bool on) {
if (on != awake) {
awake = on;
Hardware::set_display_power(awake);
LOGD("setting display power %d", awake);
emit displayPowerChanged(awake);
}
}
void Device::resetInteractiveTimeout(int timeout) {
if (timeout == -1) {
timeout = (ignition_on ? 10 : 30);
}
interactive_timeout = timeout * UI_FREQ;
}
void Device::updateBrightness(const UIState &s) {
float clipped_brightness = offroad_brightness;
if (s.scene.started && s.scene.light_sensor > 0) {
clipped_brightness = s.scene.light_sensor;
// CIE 1931 - https://www.photonstophotos.net/GeneralTopics/Exposure/Psychometric_Lightness_and_Gamma.htm
if (clipped_brightness <= 8) {
clipped_brightness = (clipped_brightness / 903.3);
} else {
clipped_brightness = std::pow((clipped_brightness + 16.0) / 116.0, 3.0);
}
// Scale back to 10% to 100%
clipped_brightness = std::clamp(100.0f * clipped_brightness, 10.0f, 100.0f);
}
int brightness = brightness_filter.update(clipped_brightness);
if (!awake) {
brightness = 0;
}
if (brightness != last_brightness) {
if (!brightness_future.isRunning()) {
brightness_future = QtConcurrent::run(Hardware::set_brightness, brightness);
last_brightness = brightness;
}
}
}
void Device::updateWakefulness(const UIState &s) {
bool ignition_just_turned_off = !s.scene.ignition && ignition_on;
ignition_on = s.scene.ignition;
if (ignition_just_turned_off) {
resetInteractiveTimeout();
} else if (interactive_timeout > 0 && --interactive_timeout == 0) {
emit interactiveTimeout();
}
setAwake(s.scene.ignition || interactive_timeout > 0);
}
UIState *uiState() {
static UIState ui_state;
return &ui_state;
}
Device *device() {
static Device _device;
return &_device;
}