You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							538 lines
						
					
					
						
							26 KiB
						
					
					
				
			
		
		
	
	
							538 lines
						
					
					
						
							26 KiB
						
					
					
				| #include <sys/time.h>
 | |
| #include <sys/resource.h>
 | |
| 
 | |
| #include <cmath>
 | |
| 
 | |
| #include "locationd.h"
 | |
| 
 | |
| using namespace EKFS;
 | |
| using namespace Eigen;
 | |
| 
 | |
| ExitHandler do_exit;
 | |
| const double ACCEL_SANITY_CHECK = 100.0;  // m/s^2
 | |
| const double ROTATION_SANITY_CHECK = 10.0;  // rad/s
 | |
| const double TRANS_SANITY_CHECK = 200.0;  // m/s
 | |
| const double CALIB_RPY_SANITY_CHECK = 0.5; // rad (+- 30 deg)
 | |
| const double ALTITUDE_SANITY_CHECK = 10000; // m
 | |
| const double MIN_STD_SANITY_CHECK = 1e-5; // m or rad
 | |
| const double VALID_TIME_SINCE_RESET = 1.0; // s
 | |
| const double VALID_POS_STD = 50.0; // m
 | |
| const double MAX_RESET_TRACKER = 5.0;
 | |
| const double SANE_GPS_UNCERTAINTY = 1500.0; // m
 | |
| 
 | |
| static VectorXd floatlist2vector(const capnp::List<float, capnp::Kind::PRIMITIVE>::Reader& floatlist) {
 | |
|   VectorXd res(floatlist.size());
 | |
|   for (int i = 0; i < floatlist.size(); i++) {
 | |
|     res[i] = floatlist[i];
 | |
|   }
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| static Vector4d quat2vector(const Quaterniond& quat) {
 | |
|   return Vector4d(quat.w(), quat.x(), quat.y(), quat.z());
 | |
| }
 | |
| 
 | |
| static Quaterniond vector2quat(const VectorXd& vec) {
 | |
|   return Quaterniond(vec(0), vec(1), vec(2), vec(3));
 | |
| }
 | |
| 
 | |
| static void init_measurement(cereal::LiveLocationKalman::Measurement::Builder meas, const VectorXd& val, const VectorXd& std, bool valid) {
 | |
|   meas.setValue(kj::arrayPtr(val.data(), val.size()));
 | |
|   meas.setStd(kj::arrayPtr(std.data(), std.size()));
 | |
|   meas.setValid(valid);
 | |
| }
 | |
| 
 | |
| 
 | |
| static MatrixXdr rotate_cov(const MatrixXdr& rot_matrix, const MatrixXdr& cov_in) {
 | |
|   // To rotate a covariance matrix, the cov matrix needs to multiplied left and right by the transform matrix
 | |
|   return ((rot_matrix *  cov_in) * rot_matrix.transpose());
 | |
| }
 | |
| 
 | |
| static VectorXd rotate_std(const MatrixXdr& rot_matrix, const VectorXd& std_in) {
 | |
|   // Stds cannot be rotated like values, only covariances can be rotated
 | |
|   return rotate_cov(rot_matrix, std_in.array().square().matrix().asDiagonal()).diagonal().array().sqrt();
 | |
| }
 | |
| 
 | |
| Localizer::Localizer() {
 | |
|   this->kf = std::make_unique<LiveKalman>();
 | |
|   this->reset_kalman();
 | |
| 
 | |
|   this->calib = Vector3d(0.0, 0.0, 0.0);
 | |
|   this->device_from_calib = MatrixXdr::Identity(3, 3);
 | |
|   this->calib_from_device = MatrixXdr::Identity(3, 3);
 | |
| 
 | |
|   for (int i = 0; i < POSENET_STD_HIST_HALF * 2; i++) {
 | |
|     this->posenet_stds.push_back(10.0);
 | |
|   }
 | |
| 
 | |
|   VectorXd ecef_pos = this->kf->get_x().segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START);
 | |
|   this->converter = std::make_unique<LocalCoord>((ECEF) { .x = ecef_pos[0], .y = ecef_pos[1], .z = ecef_pos[2] });
 | |
| }
 | |
| 
 | |
| void Localizer::build_live_location(cereal::LiveLocationKalman::Builder& fix) {
 | |
|   VectorXd predicted_state = this->kf->get_x();
 | |
|   MatrixXdr predicted_cov = this->kf->get_P();
 | |
|   VectorXd predicted_std = predicted_cov.diagonal().array().sqrt();
 | |
| 
 | |
|   VectorXd fix_ecef = predicted_state.segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START);
 | |
|   ECEF fix_ecef_ecef = { .x = fix_ecef(0), .y = fix_ecef(1), .z = fix_ecef(2) };
 | |
|   VectorXd fix_ecef_std = predicted_std.segment<STATE_ECEF_POS_ERR_LEN>(STATE_ECEF_POS_ERR_START);
 | |
|   VectorXd vel_ecef = predicted_state.segment<STATE_ECEF_VELOCITY_LEN>(STATE_ECEF_VELOCITY_START);
 | |
|   VectorXd vel_ecef_std = predicted_std.segment<STATE_ECEF_VELOCITY_ERR_LEN>(STATE_ECEF_VELOCITY_ERR_START);
 | |
|   VectorXd fix_pos_geo_vec = this->get_position_geodetic();
 | |
|   VectorXd orientation_ecef = quat2euler(vector2quat(predicted_state.segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START)));
 | |
|   VectorXd orientation_ecef_std = predicted_std.segment<STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START);
 | |
|   MatrixXdr orientation_ecef_cov = predicted_cov.block<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START, STATE_ECEF_ORIENTATION_ERR_START);
 | |
|   MatrixXdr device_from_ecef = euler2rot(orientation_ecef).transpose();
 | |
|   VectorXd calibrated_orientation_ecef = rot2euler((this->calib_from_device * device_from_ecef).transpose());
 | |
| 
 | |
|   VectorXd acc_calib = this->calib_from_device * predicted_state.segment<STATE_ACCELERATION_LEN>(STATE_ACCELERATION_START);
 | |
|   MatrixXdr acc_calib_cov = predicted_cov.block<STATE_ACCELERATION_ERR_LEN, STATE_ACCELERATION_ERR_LEN>(STATE_ACCELERATION_ERR_START, STATE_ACCELERATION_ERR_START);
 | |
|   VectorXd acc_calib_std = rotate_cov(this->calib_from_device, acc_calib_cov).diagonal().array().sqrt();
 | |
|   VectorXd ang_vel_calib = this->calib_from_device * predicted_state.segment<STATE_ANGULAR_VELOCITY_LEN>(STATE_ANGULAR_VELOCITY_START);
 | |
| 
 | |
|   MatrixXdr vel_angular_cov = predicted_cov.block<STATE_ANGULAR_VELOCITY_ERR_LEN, STATE_ANGULAR_VELOCITY_ERR_LEN>(STATE_ANGULAR_VELOCITY_ERR_START, STATE_ANGULAR_VELOCITY_ERR_START);
 | |
|   VectorXd ang_vel_calib_std = rotate_cov(this->calib_from_device, vel_angular_cov).diagonal().array().sqrt();
 | |
| 
 | |
|   VectorXd vel_device = device_from_ecef * vel_ecef;
 | |
|   VectorXd device_from_ecef_eul = quat2euler(vector2quat(predicted_state.segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START))).transpose();
 | |
|   MatrixXdr condensed_cov(STATE_ECEF_ORIENTATION_ERR_LEN + STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN + STATE_ECEF_VELOCITY_ERR_LEN);
 | |
|   condensed_cov.topLeftCorner<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>() =
 | |
|     predicted_cov.block<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START, STATE_ECEF_ORIENTATION_ERR_START);
 | |
|   condensed_cov.topRightCorner<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>() =
 | |
|     predicted_cov.block<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START, STATE_ECEF_VELOCITY_ERR_START);
 | |
|   condensed_cov.bottomRightCorner<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>() =
 | |
|     predicted_cov.block<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>(STATE_ECEF_VELOCITY_ERR_START, STATE_ECEF_VELOCITY_ERR_START);
 | |
|   condensed_cov.bottomLeftCorner<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>() =
 | |
|     predicted_cov.block<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_VELOCITY_ERR_START, STATE_ECEF_ORIENTATION_ERR_START);
 | |
|   VectorXd H_input(device_from_ecef_eul.size() + vel_ecef.size());
 | |
|   H_input << device_from_ecef_eul, vel_ecef;
 | |
|   MatrixXdr HH = this->kf->H(H_input);
 | |
|   MatrixXdr vel_device_cov = (HH * condensed_cov) * HH.transpose();
 | |
|   VectorXd vel_device_std = vel_device_cov.diagonal().array().sqrt();
 | |
| 
 | |
|   VectorXd vel_calib = this->calib_from_device * vel_device;
 | |
|   VectorXd vel_calib_std = rotate_cov(this->calib_from_device, vel_device_cov).diagonal().array().sqrt();
 | |
| 
 | |
|   VectorXd orientation_ned = ned_euler_from_ecef(fix_ecef_ecef, orientation_ecef);
 | |
|   VectorXd orientation_ned_std = rotate_cov(this->converter->ecef2ned_matrix, orientation_ecef_cov).diagonal().array().sqrt();
 | |
|   VectorXd calibrated_orientation_ned = ned_euler_from_ecef(fix_ecef_ecef, calibrated_orientation_ecef);
 | |
|   VectorXd nextfix_ecef = fix_ecef + vel_ecef;
 | |
|   VectorXd ned_vel = this->converter->ecef2ned((ECEF) { .x = nextfix_ecef(0), .y = nextfix_ecef(1), .z = nextfix_ecef(2) }).to_vector() - converter->ecef2ned(fix_ecef_ecef).to_vector();
 | |
| 
 | |
|   VectorXd accDevice = predicted_state.segment<STATE_ACCELERATION_LEN>(STATE_ACCELERATION_START);
 | |
|   VectorXd accDeviceErr = predicted_std.segment<STATE_ACCELERATION_ERR_LEN>(STATE_ACCELERATION_ERR_START);
 | |
| 
 | |
|   VectorXd angVelocityDevice = predicted_state.segment<STATE_ANGULAR_VELOCITY_LEN>(STATE_ANGULAR_VELOCITY_START);
 | |
|   VectorXd angVelocityDeviceErr = predicted_std.segment<STATE_ANGULAR_VELOCITY_ERR_LEN>(STATE_ANGULAR_VELOCITY_ERR_START);
 | |
| 
 | |
|   Vector3d nans = Vector3d(NAN, NAN, NAN);
 | |
| 
 | |
|   // TODO fill in NED and Calibrated stds
 | |
|   // write measurements to msg
 | |
|   init_measurement(fix.initPositionGeodetic(), fix_pos_geo_vec, nans, this->gps_mode);
 | |
|   init_measurement(fix.initPositionECEF(), fix_ecef, fix_ecef_std, this->gps_mode);
 | |
|   init_measurement(fix.initVelocityECEF(), vel_ecef, vel_ecef_std, this->gps_mode);
 | |
|   init_measurement(fix.initVelocityNED(), ned_vel, nans, this->gps_mode);
 | |
|   init_measurement(fix.initVelocityDevice(), vel_device, vel_device_std, true);
 | |
|   init_measurement(fix.initAccelerationDevice(), accDevice, accDeviceErr, true);
 | |
|   init_measurement(fix.initOrientationECEF(), orientation_ecef, orientation_ecef_std, this->gps_mode);
 | |
|   init_measurement(fix.initCalibratedOrientationECEF(), calibrated_orientation_ecef, nans, this->calibrated && this->gps_mode);
 | |
|   init_measurement(fix.initOrientationNED(), orientation_ned, orientation_ned_std, this->gps_mode);
 | |
|   init_measurement(fix.initCalibratedOrientationNED(), calibrated_orientation_ned, nans, this->calibrated && this->gps_mode);
 | |
|   init_measurement(fix.initAngularVelocityDevice(), angVelocityDevice, angVelocityDeviceErr, true);
 | |
|   init_measurement(fix.initVelocityCalibrated(), vel_calib, vel_calib_std, this->calibrated);
 | |
|   init_measurement(fix.initAngularVelocityCalibrated(), ang_vel_calib, ang_vel_calib_std, this->calibrated);
 | |
|   init_measurement(fix.initAccelerationCalibrated(), acc_calib, acc_calib_std, this->calibrated);
 | |
| 
 | |
|   double old_mean = 0.0, new_mean = 0.0;
 | |
|   int i = 0;
 | |
|   for (double x : this->posenet_stds) {
 | |
|     if (i < POSENET_STD_HIST_HALF) {
 | |
|       old_mean += x;
 | |
|     } else {
 | |
|       new_mean += x;
 | |
|     }
 | |
|     i++;
 | |
|   }
 | |
|   old_mean /= POSENET_STD_HIST_HALF;
 | |
|   new_mean /= POSENET_STD_HIST_HALF;
 | |
|   // experimentally found these values, no false positives in 20k minutes of driving
 | |
|   bool std_spike = (new_mean / old_mean > 4.0 && new_mean > 7.0);
 | |
| 
 | |
|   fix.setPosenetOK(!(std_spike && this->car_speed > 5.0));
 | |
|   fix.setDeviceStable(!this->device_fell);
 | |
|   fix.setExcessiveResets(this->reset_tracker > MAX_RESET_TRACKER);
 | |
|   this->device_fell = false;
 | |
| 
 | |
|   //fix.setGpsWeek(this->time.week);
 | |
|   //fix.setGpsTimeOfWeek(this->time.tow);
 | |
|   fix.setUnixTimestampMillis(this->unix_timestamp_millis);
 | |
| 
 | |
|   double time_since_reset = this->kf->get_filter_time() - this->last_reset_time;
 | |
|   fix.setTimeSinceReset(time_since_reset);
 | |
|   if (fix_ecef_std.norm() < VALID_POS_STD && this->calibrated && time_since_reset > VALID_TIME_SINCE_RESET) {
 | |
|     fix.setStatus(cereal::LiveLocationKalman::Status::VALID);
 | |
|   } else if (fix_ecef_std.norm() < VALID_POS_STD && time_since_reset > VALID_TIME_SINCE_RESET) {
 | |
|     fix.setStatus(cereal::LiveLocationKalman::Status::UNCALIBRATED);
 | |
|   } else {
 | |
|     fix.setStatus(cereal::LiveLocationKalman::Status::UNINITIALIZED);
 | |
|   }
 | |
| }
 | |
| 
 | |
| VectorXd Localizer::get_position_geodetic() {
 | |
|   VectorXd fix_ecef = this->kf->get_x().segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START);
 | |
|   ECEF fix_ecef_ecef = { .x = fix_ecef(0), .y = fix_ecef(1), .z = fix_ecef(2) };
 | |
|   Geodetic fix_pos_geo = ecef2geodetic(fix_ecef_ecef);
 | |
|   return Vector3d(fix_pos_geo.lat, fix_pos_geo.lon, fix_pos_geo.alt);
 | |
| }
 | |
| 
 | |
| VectorXd Localizer::get_state() {
 | |
|   return this->kf->get_x();
 | |
| }
 | |
| 
 | |
| VectorXd Localizer::get_stdev() {
 | |
|   return this->kf->get_P().diagonal().array().sqrt();
 | |
| }
 | |
| 
 | |
| void Localizer::handle_sensors(double current_time, const capnp::List<cereal::SensorEventData, capnp::Kind::STRUCT>::Reader& log) {
 | |
|   // TODO does not yet account for double sensor readings in the log
 | |
|   for (int i = 0; i < log.size(); i++) {
 | |
|     const cereal::SensorEventData::Reader& sensor_reading = log[i];
 | |
| 
 | |
|     // Ignore empty readings (e.g. in case the magnetometer had no data ready)
 | |
|     if (sensor_reading.getTimestamp() == 0) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     double sensor_time = 1e-9 * sensor_reading.getTimestamp();
 | |
| 
 | |
|     // sensor time and log time should be close
 | |
|     if (std::abs(current_time - sensor_time) > 0.1) {
 | |
|       LOGE("Sensor reading ignored, sensor timestamp more than 100ms off from log time");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|       // TODO: handle messages from two IMUs at the same time
 | |
|     if (sensor_reading.getSource() == cereal::SensorEventData::SensorSource::BMX055) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Gyro Uncalibrated
 | |
|     if (sensor_reading.getSensor() == SENSOR_GYRO_UNCALIBRATED && sensor_reading.getType() == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED) {
 | |
|       auto v = sensor_reading.getGyroUncalibrated().getV();
 | |
|       auto meas = Vector3d(-v[2], -v[1], -v[0]);
 | |
|       if (meas.norm() < ROTATION_SANITY_CHECK) {
 | |
|         this->kf->predict_and_observe(sensor_time, OBSERVATION_PHONE_GYRO, { meas });
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Accelerometer
 | |
|     if (sensor_reading.getSensor() == SENSOR_ACCELEROMETER && sensor_reading.getType() == SENSOR_TYPE_ACCELEROMETER) {
 | |
|       auto v = sensor_reading.getAcceleration().getV();
 | |
| 
 | |
|       // TODO: reduce false positives and re-enable this check
 | |
|       // check if device fell, estimate 10 for g
 | |
|       // 40m/s**2 is a good filter for falling detection, no false positives in 20k minutes of driving
 | |
|       //this->device_fell |= (floatlist2vector(v) - Vector3d(10.0, 0.0, 0.0)).norm() > 40.0;
 | |
| 
 | |
|       auto meas = Vector3d(-v[2], -v[1], -v[0]);
 | |
|       if (meas.norm() < ACCEL_SANITY_CHECK) {
 | |
|         this->kf->predict_and_observe(sensor_time, OBSERVATION_PHONE_ACCEL, { meas });
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Localizer::input_fake_gps_observations(double current_time) {
 | |
|   // This is done to make sure that the error estimate of the position does not blow up
 | |
|   // when the filter is in no-gps mode
 | |
|   // Steps : first predict -> observe current obs with reasonable STD
 | |
|   this->kf->predict(current_time);
 | |
| 
 | |
|   VectorXd current_x = this->kf->get_x();  
 | |
|   VectorXd ecef_pos = current_x.segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START);
 | |
|   VectorXd ecef_vel = current_x.segment<STATE_ECEF_VELOCITY_LEN>(STATE_ECEF_VELOCITY_START);
 | |
|   MatrixXdr ecef_pos_R = this->kf->get_fake_gps_pos_cov();
 | |
|   MatrixXdr ecef_vel_R = this->kf->get_fake_gps_vel_cov();
 | |
|   
 | |
|   this->kf->predict_and_observe(current_time, OBSERVATION_ECEF_POS, { ecef_pos }, { ecef_pos_R });
 | |
|   this->kf->predict_and_observe(current_time, OBSERVATION_ECEF_VEL, { ecef_vel }, { ecef_vel_R });
 | |
| }
 | |
| 
 | |
| void Localizer::handle_gps(double current_time, const cereal::GpsLocationData::Reader& log) {
 | |
|   // ignore the message if the fix is invalid
 | |
| 
 | |
|   bool gps_invalid_flag = (log.getFlags() % 2 == 0);
 | |
|   bool gps_unreasonable = (Vector2d(log.getAccuracy(), log.getVerticalAccuracy()).norm() >= SANE_GPS_UNCERTAINTY);
 | |
|   bool gps_accuracy_insane = ((log.getVerticalAccuracy() <= 0) || (log.getSpeedAccuracy() <= 0) || (log.getBearingAccuracyDeg() <= 0));
 | |
|   bool gps_lat_lng_alt_insane = ((std::abs(log.getLatitude()) > 90) || (std::abs(log.getLongitude()) > 180) || (std::abs(log.getAltitude()) > ALTITUDE_SANITY_CHECK));
 | |
|   bool gps_vel_insane = (floatlist2vector(log.getVNED()).norm() > TRANS_SANITY_CHECK);
 | |
| 
 | |
|   if (gps_invalid_flag || gps_unreasonable || gps_accuracy_insane || gps_lat_lng_alt_insane || gps_vel_insane){
 | |
|     this->determine_gps_mode(current_time);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Process message
 | |
|   this->last_gps_fix = current_time;
 | |
|   this->gps_mode = true;
 | |
|   Geodetic geodetic = { log.getLatitude(), log.getLongitude(), log.getAltitude() };
 | |
|   this->converter = std::make_unique<LocalCoord>(geodetic);
 | |
| 
 | |
|   VectorXd ecef_pos = this->converter->ned2ecef({ 0.0, 0.0, 0.0 }).to_vector();
 | |
|   VectorXd ecef_vel = this->converter->ned2ecef({ log.getVNED()[0], log.getVNED()[1], log.getVNED()[2] }).to_vector() - ecef_pos;
 | |
|   MatrixXdr ecef_pos_R = Vector3d::Constant(std::pow(10.0 * log.getAccuracy(),2) + std::pow(10.0 * log.getVerticalAccuracy(),2)).asDiagonal();
 | |
|   MatrixXdr ecef_vel_R = Vector3d::Constant(std::pow(log.getSpeedAccuracy() * 10.0, 2)).asDiagonal();
 | |
|   
 | |
|   this->unix_timestamp_millis = log.getTimestamp();
 | |
|   double gps_est_error = (this->kf->get_x().segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START) - ecef_pos).norm();
 | |
| 
 | |
|   VectorXd orientation_ecef = quat2euler(vector2quat(this->kf->get_x().segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START)));
 | |
|   VectorXd orientation_ned = ned_euler_from_ecef({ ecef_pos(0), ecef_pos(1), ecef_pos(2) }, orientation_ecef);
 | |
|   VectorXd orientation_ned_gps = Vector3d(0.0, 0.0, DEG2RAD(log.getBearingDeg()));
 | |
|   VectorXd orientation_error = (orientation_ned - orientation_ned_gps).array() - M_PI;
 | |
|   for (int i = 0; i < orientation_error.size(); i++) {
 | |
|     orientation_error(i) = std::fmod(orientation_error(i), 2.0 * M_PI);
 | |
|     if (orientation_error(i) < 0.0) {
 | |
|       orientation_error(i) += 2.0 * M_PI;
 | |
|     }
 | |
|     orientation_error(i) -= M_PI;
 | |
|   }
 | |
|   VectorXd initial_pose_ecef_quat = quat2vector(euler2quat(ecef_euler_from_ned({ ecef_pos(0), ecef_pos(1), ecef_pos(2) }, orientation_ned_gps)));
 | |
| 
 | |
|   if (ecef_vel.norm() > 5.0 && orientation_error.norm() > 1.0) {
 | |
|     LOGE("Locationd vs ubloxLocation orientation difference too large, kalman reset");
 | |
|     this->reset_kalman(NAN, initial_pose_ecef_quat, ecef_pos, ecef_vel, ecef_pos_R, ecef_vel_R);
 | |
|     this->kf->predict_and_observe(current_time, OBSERVATION_ECEF_ORIENTATION_FROM_GPS, { initial_pose_ecef_quat });
 | |
|   } else if (gps_est_error > 100.0) {
 | |
|     LOGE("Locationd vs ubloxLocation position difference too large, kalman reset");
 | |
|     this->reset_kalman(NAN, initial_pose_ecef_quat, ecef_pos, ecef_vel, ecef_pos_R, ecef_vel_R);
 | |
|   }
 | |
| 
 | |
|   this->kf->predict_and_observe(current_time, OBSERVATION_ECEF_POS, { ecef_pos }, { ecef_pos_R });
 | |
|   this->kf->predict_and_observe(current_time, OBSERVATION_ECEF_VEL, { ecef_vel }, { ecef_vel_R });
 | |
| }
 | |
| 
 | |
| void Localizer::handle_car_state(double current_time, const cereal::CarState::Reader& log) {
 | |
|   this->car_speed = std::abs(log.getVEgo());
 | |
|   if (log.getStandstill()) {
 | |
|     this->kf->predict_and_observe(current_time, OBSERVATION_NO_ROT, { Vector3d(0.0, 0.0, 0.0) });
 | |
|     this->kf->predict_and_observe(current_time, OBSERVATION_NO_ACCEL, { Vector3d(0.0, 0.0, 0.0) });
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Localizer::handle_cam_odo(double current_time, const cereal::CameraOdometry::Reader& log) {
 | |
|   VectorXd rot_device = this->device_from_calib * floatlist2vector(log.getRot());
 | |
|   VectorXd trans_device = this->device_from_calib * floatlist2vector(log.getTrans());
 | |
| 
 | |
|   if ((rot_device.norm() > ROTATION_SANITY_CHECK) || (trans_device.norm() > TRANS_SANITY_CHECK)) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   VectorXd rot_calib_std = floatlist2vector(log.getRotStd());
 | |
|   VectorXd trans_calib_std = floatlist2vector(log.getTransStd());
 | |
| 
 | |
|   if ((rot_calib_std.minCoeff() <= MIN_STD_SANITY_CHECK) || (trans_calib_std.minCoeff() <= MIN_STD_SANITY_CHECK)) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if ((rot_calib_std.norm() > 10 * ROTATION_SANITY_CHECK) || (trans_calib_std.norm() > 10 * TRANS_SANITY_CHECK)) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   this->posenet_stds.pop_front();
 | |
|   this->posenet_stds.push_back(trans_calib_std[0]);
 | |
| 
 | |
|   // Multiply by 10 to avoid to high certainty in kalman filter because of temporally correlated noise
 | |
|   trans_calib_std *= 10.0;
 | |
|   rot_calib_std *= 10.0;
 | |
|   MatrixXdr rot_device_cov = rotate_std(this->device_from_calib, rot_calib_std).array().square().matrix().asDiagonal();
 | |
|   MatrixXdr trans_device_cov = rotate_std(this->device_from_calib, trans_calib_std).array().square().matrix().asDiagonal();
 | |
|   this->kf->predict_and_observe(current_time, OBSERVATION_CAMERA_ODO_ROTATION,
 | |
|     { rot_device }, { rot_device_cov });
 | |
|   this->kf->predict_and_observe(current_time, OBSERVATION_CAMERA_ODO_TRANSLATION,
 | |
|     { trans_device }, { trans_device_cov });
 | |
| }
 | |
| 
 | |
| void Localizer::handle_live_calib(double current_time, const cereal::LiveCalibrationData::Reader& log) {
 | |
|   if (log.getRpyCalib().size() > 0) {
 | |
|     auto live_calib = floatlist2vector(log.getRpyCalib());
 | |
|     if ((live_calib.minCoeff() < -CALIB_RPY_SANITY_CHECK) || (live_calib.maxCoeff() > CALIB_RPY_SANITY_CHECK)) {
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     this->calib = live_calib;
 | |
|     this->device_from_calib = euler2rot(this->calib);
 | |
|     this->calib_from_device = this->device_from_calib.transpose();
 | |
|     this->calibrated = log.getCalStatus() == 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Localizer::reset_kalman(double current_time) {
 | |
|   VectorXd init_x = this->kf->get_initial_x();
 | |
|   MatrixXdr init_P = this->kf->get_initial_P();
 | |
|   this->reset_kalman(current_time, init_x, init_P);
 | |
| }
 | |
| 
 | |
| void Localizer::finite_check(double current_time) {
 | |
|   bool all_finite = this->kf->get_x().array().isFinite().all() or this->kf->get_P().array().isFinite().all();
 | |
|   if (!all_finite) {
 | |
|     LOGE("Non-finite values detected, kalman reset");
 | |
|     this->reset_kalman(current_time);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Localizer::time_check(double current_time) {
 | |
|   if (std::isnan(this->last_reset_time)) {
 | |
|     this->last_reset_time = current_time;
 | |
|   }
 | |
|   double filter_time = this->kf->get_filter_time();
 | |
|   bool big_time_gap = !std::isnan(filter_time) && (current_time - filter_time > 10);
 | |
|   if (big_time_gap) {
 | |
|     LOGE("Time gap of over 10s detected, kalman reset");
 | |
|     this->reset_kalman(current_time);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Localizer::update_reset_tracker() {
 | |
|   // reset tracker is tuned to trigger when over 1reset/10s over 2min period
 | |
|   if (this->isGpsOK()) {
 | |
|     this->reset_tracker *= .99995;
 | |
|   } else {
 | |
|     this->reset_tracker = 0.0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Localizer::reset_kalman(double current_time, VectorXd init_orient, VectorXd init_pos, VectorXd init_vel, MatrixXdr init_pos_R, MatrixXdr init_vel_R) {
 | |
|   // too nonlinear to init on completely wrong
 | |
|   VectorXd current_x = this->kf->get_x();
 | |
|   MatrixXdr current_P = this->kf->get_P();
 | |
|   MatrixXdr init_P = this->kf->get_initial_P();
 | |
|   MatrixXdr reset_orientation_P = this->kf->get_reset_orientation_P();
 | |
|   int non_ecef_state_err_len = init_P.rows() - (STATE_ECEF_POS_ERR_LEN + STATE_ECEF_ORIENTATION_ERR_LEN + STATE_ECEF_VELOCITY_ERR_LEN);
 | |
| 
 | |
|   current_x.segment<STATE_ECEF_ORIENTATION_LEN>(STATE_ECEF_ORIENTATION_START) = init_orient;
 | |
|   current_x.segment<STATE_ECEF_VELOCITY_LEN>(STATE_ECEF_VELOCITY_START) = init_vel;
 | |
|   current_x.segment<STATE_ECEF_POS_LEN>(STATE_ECEF_POS_START) = init_pos;
 | |
| 
 | |
|   init_P.block<STATE_ECEF_POS_ERR_LEN, STATE_ECEF_POS_ERR_LEN>(STATE_ECEF_POS_ERR_START, STATE_ECEF_POS_ERR_START).diagonal() = init_pos_R.diagonal();
 | |
|   init_P.block<STATE_ECEF_ORIENTATION_ERR_LEN, STATE_ECEF_ORIENTATION_ERR_LEN>(STATE_ECEF_ORIENTATION_ERR_START, STATE_ECEF_ORIENTATION_ERR_START).diagonal() = reset_orientation_P.diagonal();
 | |
|   init_P.block<STATE_ECEF_VELOCITY_ERR_LEN, STATE_ECEF_VELOCITY_ERR_LEN>(STATE_ECEF_VELOCITY_ERR_START, STATE_ECEF_VELOCITY_ERR_START).diagonal() = init_vel_R.diagonal();
 | |
|   init_P.block(STATE_ANGULAR_VELOCITY_ERR_START, STATE_ANGULAR_VELOCITY_ERR_START, non_ecef_state_err_len, non_ecef_state_err_len).diagonal() = current_P.block(STATE_ANGULAR_VELOCITY_ERR_START, STATE_ANGULAR_VELOCITY_ERR_START, non_ecef_state_err_len, non_ecef_state_err_len).diagonal();
 | |
|   
 | |
|   this->reset_kalman(current_time, current_x, init_P);
 | |
| }
 | |
| 
 | |
| void Localizer::reset_kalman(double current_time, VectorXd init_x, MatrixXdr init_P) {
 | |
|   this->kf->init_state(init_x, init_P, current_time);
 | |
|   this->last_reset_time = current_time;
 | |
|   this->reset_tracker += 1.0;
 | |
| }
 | |
| 
 | |
| void Localizer::handle_msg_bytes(const char *data, const size_t size) {
 | |
|   AlignedBuffer aligned_buf;
 | |
| 
 | |
|   capnp::FlatArrayMessageReader cmsg(aligned_buf.align(data, size));
 | |
|   cereal::Event::Reader event = cmsg.getRoot<cereal::Event>();
 | |
| 
 | |
|   this->handle_msg(event);
 | |
| }
 | |
| 
 | |
| void Localizer::handle_msg(const cereal::Event::Reader& log) {
 | |
|   double t = log.getLogMonoTime() * 1e-9;
 | |
|   this->time_check(t);
 | |
|   if (log.isSensorEvents()) {
 | |
|     this->handle_sensors(t, log.getSensorEvents());
 | |
|   } else if (log.isGpsLocationExternal()) {
 | |
|     this->handle_gps(t, log.getGpsLocationExternal());
 | |
|   } else if (log.isCarState()) {
 | |
|     this->handle_car_state(t, log.getCarState());
 | |
|   } else if (log.isCameraOdometry()) {
 | |
|     this->handle_cam_odo(t, log.getCameraOdometry());
 | |
|   } else if (log.isLiveCalibration()) {
 | |
|     this->handle_live_calib(t, log.getLiveCalibration());
 | |
|   }
 | |
|   this->finite_check();
 | |
|   this->update_reset_tracker();
 | |
| }
 | |
| 
 | |
| kj::ArrayPtr<capnp::byte> Localizer::get_message_bytes(MessageBuilder& msg_builder, uint64_t logMonoTime,
 | |
|   bool inputsOK, bool sensorsOK, bool gpsOK)
 | |
| {
 | |
|   cereal::Event::Builder evt = msg_builder.initEvent();
 | |
|   evt.setLogMonoTime(logMonoTime);
 | |
|   cereal::LiveLocationKalman::Builder liveLoc = evt.initLiveLocationKalman();
 | |
|   this->build_live_location(liveLoc);
 | |
|   liveLoc.setInputsOK(inputsOK);
 | |
|   liveLoc.setSensorsOK(sensorsOK);
 | |
|   liveLoc.setGpsOK(gpsOK);
 | |
|   return msg_builder.toBytes();
 | |
| }
 | |
| 
 | |
| 
 | |
| bool Localizer::isGpsOK() {
 | |
|   return this->kf->get_filter_time() - this->last_gps_fix < 1.0;
 | |
| }
 | |
| 
 | |
| void Localizer::determine_gps_mode(double current_time) {
 | |
|   // 1. If the pos_std is greater than what's not acceptible and localizer is in gps-mode, reset to no-gps-mode
 | |
|   // 2. If the pos_std is greater than what's not acceptible and localizer is in no-gps-mode, fake obs
 | |
|   // 3. If the pos_std is smaller than what's not acceptible, let gps-mode be whatever it is
 | |
|   VectorXd current_pos_std = this->kf->get_P().block<STATE_ECEF_POS_ERR_LEN, STATE_ECEF_POS_ERR_LEN>(STATE_ECEF_POS_ERR_START, STATE_ECEF_POS_ERR_START).diagonal().array().sqrt();
 | |
|   if (current_pos_std.norm() > SANE_GPS_UNCERTAINTY){
 | |
|     if (this->gps_mode){
 | |
|       this->gps_mode = false;
 | |
|       this->reset_kalman(current_time);
 | |
|     }
 | |
|     else{
 | |
|       this->input_fake_gps_observations(current_time);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| int Localizer::locationd_thread() {
 | |
|   const std::initializer_list<const char *> service_list =
 | |
|       { "gpsLocationExternal", "sensorEvents", "cameraOdometry", "liveCalibration", "carState" };
 | |
|   PubMaster pm({ "liveLocationKalman" });
 | |
|   SubMaster sm(service_list, nullptr, { "gpsLocationExternal" });
 | |
| 
 | |
|   while (!do_exit) {
 | |
|     sm.update();
 | |
|     for (const char* service : service_list) {
 | |
|       if (sm.updated(service) && sm.valid(service)) {
 | |
|         const cereal::Event::Reader log = sm[service];
 | |
|         this->handle_msg(log);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (sm.updated("cameraOdometry")) {
 | |
|       uint64_t logMonoTime = sm["cameraOdometry"].getLogMonoTime();
 | |
|       bool inputsOK = sm.allAliveAndValid();
 | |
|       bool sensorsOK = sm.alive("sensorEvents") && sm.valid("sensorEvents");
 | |
|       bool gpsOK = this->isGpsOK();
 | |
| 
 | |
|       MessageBuilder msg_builder;
 | |
|       kj::ArrayPtr<capnp::byte> bytes = this->get_message_bytes(msg_builder, logMonoTime, inputsOK, sensorsOK, gpsOK);
 | |
|       pm.send("liveLocationKalman", bytes.begin(), bytes.size());
 | |
| 
 | |
|       if (sm.frame % 1200 == 0 && gpsOK) {  // once a minute
 | |
|         VectorXd posGeo = this->get_position_geodetic();
 | |
|         std::string lastGPSPosJSON = util::string_format(
 | |
|           "{\"latitude\": %.15f, \"longitude\": %.15f, \"altitude\": %.15f}", posGeo(0), posGeo(1), posGeo(2));
 | |
| 
 | |
|         std::thread([] (const std::string gpsjson) {
 | |
|           Params().put("LastGPSPosition", gpsjson);
 | |
|         }, lastGPSPosJSON).detach();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int main() {
 | |
|   util::set_realtime_priority(5);
 | |
| 
 | |
|   Localizer localizer;
 | |
|   return localizer.locationd_thread();
 | |
| }
 | |
| 
 |