You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							40 lines
						
					
					
						
							1.5 KiB
						
					
					
				
			
		
		
	
	
							40 lines
						
					
					
						
							1.5 KiB
						
					
					
				| import pytest
 | |
| import itertools
 | |
| from parameterized import parameterized_class
 | |
| 
 | |
| from cereal import log
 | |
| 
 | |
| from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import desired_follow_distance, get_T_FOLLOW
 | |
| from openpilot.selfdrive.test.longitudinal_maneuvers.maneuver import Maneuver
 | |
| 
 | |
| 
 | |
| def run_following_distance_simulation(v_lead, t_end=100.0, e2e=False, personality=0):
 | |
|   man = Maneuver(
 | |
|     '',
 | |
|     duration=t_end,
 | |
|     initial_speed=float(v_lead),
 | |
|     lead_relevancy=True,
 | |
|     initial_distance_lead=100,
 | |
|     speed_lead_values=[v_lead],
 | |
|     breakpoints=[0.],
 | |
|     e2e=e2e,
 | |
|     personality=personality,
 | |
|   )
 | |
|   valid, output = man.evaluate()
 | |
|   assert valid
 | |
|   return output[-1,2] - output[-1,1]
 | |
| 
 | |
| 
 | |
| @parameterized_class(("e2e", "personality", "speed"), itertools.product(
 | |
|                       [True, False], # e2e
 | |
|                       [log.LongitudinalPersonality.relaxed, # personality
 | |
|                        log.LongitudinalPersonality.standard,
 | |
|                        log.LongitudinalPersonality.aggressive],
 | |
|                       [0,10,35])) # speed
 | |
| class TestFollowingDistance:
 | |
|   def test_following_distance(self):
 | |
|     v_lead = float(self.speed)
 | |
|     simulation_steady_state = run_following_distance_simulation(v_lead, e2e=self.e2e, personality=self.personality)
 | |
|     correct_steady_state = desired_follow_distance(v_lead, v_lead, get_T_FOLLOW(self.personality))
 | |
|     err_ratio = 0.2 if self.e2e else 0.1
 | |
|     assert simulation_steady_state == pytest.approx(correct_steady_state, abs=err_ratio * correct_steady_state + .5)
 | |
| 
 |