openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

209 lines
7.6 KiB

#pragma clang diagnostic ignored "-Wexceptions"
#include "selfdrive/modeld/runners/snpemodel.h"
#include <cassert>
#include <cstdlib>
#include <cstring>
#include "common/util.h"
#include "common/timing.h"
void PrintErrorStringAndExit() {
std::cerr << zdl::DlSystem::getLastErrorString() << std::endl;
std::exit(EXIT_FAILURE);
}
SNPEModel::SNPEModel(const char *path, float *loutput, size_t loutput_size, int runtime, bool luse_extra, bool luse_tf8, cl_context context) {
output = loutput;
output_size = loutput_size;
use_extra = luse_extra;
use_tf8 = luse_tf8;
#ifdef QCOM2
if (runtime==USE_GPU_RUNTIME) {
Runtime = zdl::DlSystem::Runtime_t::GPU;
} else if (runtime==USE_DSP_RUNTIME) {
Runtime = zdl::DlSystem::Runtime_t::DSP;
} else {
Runtime = zdl::DlSystem::Runtime_t::CPU;
}
assert(zdl::SNPE::SNPEFactory::isRuntimeAvailable(Runtime));
#endif
model_data = util::read_file(path);
assert(model_data.size() > 0);
// load model
std::unique_ptr<zdl::DlContainer::IDlContainer> container = zdl::DlContainer::IDlContainer::open((uint8_t*)model_data.data(), model_data.size());
if (!container) { PrintErrorStringAndExit(); }
printf("loaded model with size: %lu\n", model_data.size());
// create model runner
zdl::SNPE::SNPEBuilder snpeBuilder(container.get());
while (!snpe) {
#ifdef QCOM2
snpe = snpeBuilder.setOutputLayers({})
.setRuntimeProcessor(Runtime)
.setUseUserSuppliedBuffers(true)
.setPerformanceProfile(zdl::DlSystem::PerformanceProfile_t::HIGH_PERFORMANCE)
.build();
#else
snpe = snpeBuilder.setOutputLayers({})
.setUseUserSuppliedBuffers(true)
.setPerformanceProfile(zdl::DlSystem::PerformanceProfile_t::HIGH_PERFORMANCE)
.build();
#endif
if (!snpe) std::cerr << zdl::DlSystem::getLastErrorString() << std::endl;
}
// get input and output names
const auto &strListi_opt = snpe->getInputTensorNames();
if (!strListi_opt) throw std::runtime_error("Error obtaining Input tensor names");
const auto &strListi = *strListi_opt;
//assert(strListi.size() == 1);
const char *input_tensor_name = strListi.at(0);
const auto &strListo_opt = snpe->getOutputTensorNames();
if (!strListo_opt) throw std::runtime_error("Error obtaining Output tensor names");
const auto &strListo = *strListo_opt;
assert(strListo.size() == 1);
const char *output_tensor_name = strListo.at(0);
printf("model: %s -> %s\n", input_tensor_name, output_tensor_name);
zdl::DlSystem::UserBufferEncodingFloat userBufferEncodingFloat;
zdl::DlSystem::UserBufferEncodingTf8 userBufferEncodingTf8(0, 1./255); // network takes 0-1
zdl::DlSystem::IUserBufferFactory& ubFactory = zdl::SNPE::SNPEFactory::getUserBufferFactory();
size_t size_of_input = use_tf8 ? sizeof(uint8_t) : sizeof(float);
// create input buffer
{
const auto &inputDims_opt = snpe->getInputDimensions(input_tensor_name);
const zdl::DlSystem::TensorShape& bufferShape = *inputDims_opt;
std::vector<size_t> strides(bufferShape.rank());
strides[strides.size() - 1] = size_of_input;
size_t product = 1;
for (size_t i = 0; i < bufferShape.rank(); i++) product *= bufferShape[i];
size_t stride = strides[strides.size() - 1];
for (size_t i = bufferShape.rank() - 1; i > 0; i--) {
stride *= bufferShape[i];
strides[i-1] = stride;
}
printf("input product is %lu\n", product);
inputBuffer = ubFactory.createUserBuffer(NULL,
product*size_of_input,
strides,
use_tf8 ? (zdl::DlSystem::UserBufferEncoding*)&userBufferEncodingTf8 : (zdl::DlSystem::UserBufferEncoding*)&userBufferEncodingFloat);
inputMap.add(input_tensor_name, inputBuffer.get());
}
if (use_extra) {
const char *extra_tensor_name = strListi.at(1);
const auto &extraDims_opt = snpe->getInputDimensions(extra_tensor_name);
const zdl::DlSystem::TensorShape& bufferShape = *extraDims_opt;
std::vector<size_t> strides(bufferShape.rank());
strides[strides.size() - 1] = sizeof(float);
size_t product = 1;
for (size_t i = 0; i < bufferShape.rank(); i++) product *= bufferShape[i];
size_t stride = strides[strides.size() - 1];
for (size_t i = bufferShape.rank() - 1; i > 0; i--) {
stride *= bufferShape[i];
strides[i-1] = stride;
}
printf("extra product is %lu\n", product);
extraBuffer = ubFactory.createUserBuffer(NULL, product*sizeof(float), strides, &userBufferEncodingFloat);
inputMap.add(extra_tensor_name, extraBuffer.get());
}
// create output buffer
{
const zdl::DlSystem::TensorShape& bufferShape = snpe->getInputOutputBufferAttributes(output_tensor_name)->getDims();
if (output_size != 0) {
assert(output_size == bufferShape[1]);
} else {
output_size = bufferShape[1];
}
std::vector<size_t> outputStrides = {output_size * sizeof(float), sizeof(float)};
outputBuffer = ubFactory.createUserBuffer(output, output_size * sizeof(float), outputStrides, &userBufferEncodingFloat);
outputMap.add(output_tensor_name, outputBuffer.get());
}
#ifdef USE_THNEED
if (Runtime == zdl::DlSystem::Runtime_t::GPU) {
thneed.reset(new Thneed());
}
#endif
}
void SNPEModel::addRecurrent(float *state, int state_size) {
recurrent = state;
recurrent_size = state_size;
recurrentBuffer = this->addExtra(state, state_size, 3);
}
void SNPEModel::addTrafficConvention(float *state, int state_size) {
trafficConvention = state;
trafficConventionBuffer = this->addExtra(state, state_size, 2);
}
void SNPEModel::addDesire(float *state, int state_size) {
desire = state;
desireBuffer = this->addExtra(state, state_size, 1);
}
void SNPEModel::addNavFeatures(float *state, int state_size) {
navFeatures = state;
navFeaturesBuffer = this->addExtra(state, state_size, 1);
}
void SNPEModel::addDrivingStyle(float *state, int state_size) {
drivingStyle = state;
drivingStyleBuffer = this->addExtra(state, state_size, 2);
}
void SNPEModel::addCalib(float *state, int state_size) {
calib = state;
calibBuffer = this->addExtra(state, state_size, 1);
}
void SNPEModel::addImage(float *image_buf, int buf_size) {
input = image_buf;
input_size = buf_size;
}
void SNPEModel::addExtra(float *image_buf, int buf_size) {
extra = image_buf;
extra_size = buf_size;
}
std::unique_ptr<zdl::DlSystem::IUserBuffer> SNPEModel::addExtra(float *state, int state_size, int idx) {
// get input and output names
const auto real_idx = idx + (use_extra ? 1 : 0);
const auto &strListi_opt = snpe->getInputTensorNames();
if (!strListi_opt) throw std::runtime_error("Error obtaining Input tensor names");
const auto &strListi = *strListi_opt;
const char *input_tensor_name = strListi.at(real_idx);
printf("adding index %d: %s\n", real_idx, input_tensor_name);
zdl::DlSystem::UserBufferEncodingFloat userBufferEncodingFloat;
zdl::DlSystem::IUserBufferFactory& ubFactory = zdl::SNPE::SNPEFactory::getUserBufferFactory();
std::vector<size_t> retStrides = {state_size * sizeof(float), sizeof(float)};
auto ret = ubFactory.createUserBuffer(state, state_size * sizeof(float), retStrides, &userBufferEncodingFloat);
inputMap.add(input_tensor_name, ret.get());
return ret;
}
void SNPEModel::execute() {
bool ret = inputBuffer->setBufferAddress(input);
assert(ret == true);
if (use_extra) {
bool extra_ret = extraBuffer->setBufferAddress(extra);
assert(extra_ret == true);
}
if (!snpe->execute(inputMap, outputMap)) {
PrintErrorStringAndExit();
}
}