openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Hoang Bui 4c05358aad map: Transfer to MapLibre (#31185) 1 year ago
..
.gitignore test_debayer.py some PC fixes (#24449) 3 years ago
README.md rename carEvents -> onroadEvents (#30577) 1 year ago
__init__.py add openpilot prefix to imports (#29498) 2 years ago
capture.py CI: Pylint to ruff (#29294) 2 years ago
compare_logs.py compare_logs: separate format_process_diff into a new function (#30284) 2 years ago
debayer_replay_ref_commit debayering: update test ref commit 3 years ago
migration.py Use a safety param for gas interceptor (#30719) 1 year ago
model_replay.py Delete lat planner (#31089) 1 year ago
model_replay_ref_commit map: Transfer to MapLibre (#31185) 1 year ago
process_replay.py Delete lat planner (#31089) 1 year ago
ref_commit CHEVROLET BOLT EUV 2022: Add a simple neural feed forward (#31266) 1 year ago
regen.py regen: dummy dcamera support (#30323) 2 years ago
regen_all.py Revert "Process Replay: move to pytest (#30260)" (#30687) 1 year ago
test_debayer.py LogReader: move opci to tools/lib (#31021) 1 year ago
test_fuzzy.py CI: speedup unit test job (#30995) 1 year ago
test_processes.py LogReader: move opci to tools/lib (#31021) 1 year ago
test_regen.py LogReader: move opci to tools/lib (#31021) 1 year ago
vision_meta.py process_replay: fix support for single cam segments (#30143) 2 years ago

README.md

Process replay

Process replay is a regression test designed to identify any changes in the output of a process. This test replays a segment through individual processes and compares the output to a known good replay. Each make is represented in the test with a segment.

If the test fails, make sure that you didn't unintentionally change anything. If there are intentional changes, the reference logs will be updated.

Use test_processes.py to run the test locally. Use FILEREADER_CACHE='1' test_processes.py to cache log files.

Currently the following processes are tested:

  • controlsd
  • radard
  • plannerd
  • calibrationd
  • dmonitoringd
  • locationd
  • paramsd
  • ubloxd
  • torqued

Usage

Usage: test_processes.py [-h] [--whitelist-procs PROCS] [--whitelist-cars CARS] [--blacklist-procs PROCS]
                         [--blacklist-cars CARS] [--ignore-fields FIELDS] [--ignore-msgs MSGS] [--update-refs] [--upload-only]
Regression test to identify changes in a process's output
optional arguments:
  -h, --help            show this help message and exit
  --whitelist-procs PROCS               Whitelist given processes from the test (e.g. controlsd)
  --whitelist-cars WHITELIST_CARS       Whitelist given cars from the test (e.g. HONDA)
  --blacklist-procs BLACKLIST_PROCS     Blacklist given processes from the test (e.g. controlsd)
  --blacklist-cars BLACKLIST_CARS       Blacklist given cars from the test (e.g. HONDA)
  --ignore-fields IGNORE_FIELDS         Extra fields or msgs to ignore (e.g. carState.events)
  --ignore-msgs IGNORE_MSGS             Msgs to ignore (e.g. onroadEvents)
  --update-refs                         Updates reference logs using current commit
  --upload-only                         Skips testing processes and uploads logs from previous test run

Forks

openpilot forks can use this test with their own reference logs, by default test_proccess.py saves logs locally.

To generate new logs:

./test_processes.py

Then, check in the new logs using git-lfs. Make sure to also update the ref_commit file to the current commit.

API

Process replay test suite exposes programmatic APIs for simultaneously running processes or groups of processes on provided logs.

def replay_process_with_name(name: Union[str, Iterable[str]], lr: LogIterable, *args, **kwargs) -> List[capnp._DynamicStructReader]:

def replay_process(
  cfg: Union[ProcessConfig, Iterable[ProcessConfig]], lr: LogIterable, frs: Optional[Dict[str, Any]] = None, 
  fingerprint: Optional[str] = None, return_all_logs: bool = False, custom_params: Optional[Dict[str, Any]] = None, disable_progress: bool = False
) -> List[capnp._DynamicStructReader]:

Example usage:

from openpilot.selfdrive.test.process_replay import replay_process_with_name
from openpilot.tools.lib.logreader import LogReader

lr = LogReader(...)

# provide a name of the process to replay
output_logs = replay_process_with_name('locationd', lr)

# or list of names
output_logs = replay_process_with_name(['ubloxd', 'locationd'], lr)

Supported processes:

  • controlsd
  • radard
  • plannerd
  • calibrationd
  • dmonitoringd
  • locationd
  • paramsd
  • ubloxd
  • torqued
  • modeld
  • dmonitoringmodeld

Certain processes may require an initial state, which is usually supplied within Params and persisting from segment to segment (e.g CalibrationParams, LiveParameters). The custom_params is dictionary used to prepopulate Params with arbitrary values. The get_custom_params_from_lr helper is provided to fetch meaningful values from log files.

from openpilot.selfdrive.test.process_replay import get_custom_params_from_lr

previous_segment_lr = LogReader(...)
current_segment_lr = LogReader(...)

custom_params = get_custom_params_from_lr(previous_segment_lr, 'last')

output_logs = replay_process_with_name('calibrationd', lr, custom_params=custom_params)

Replaying processes that use VisionIPC (e.g. modeld, dmonitoringmodeld) require additional frs dictionary with camera states as keys and FrameReader objects as values.

from openpilot.tools.lib.framereader import FrameReader

frs = {
  'roadCameraState': FrameReader(...),
  'wideRoadCameraState': FrameReader(...),
  'driverCameraState': FrameReader(...),
}

output_logs = replay_process_with_name(['modeld', 'dmonitoringmodeld'], lr, frs=frs)

To capture stdout/stderr of the replayed process, captured_output_store can be provided.

output_store = dict()
# pass dictionary by reference, it will be filled with standard outputs - even if process replay fails
output_logs = replay_process_with_name(['radard', 'plannerd'], lr, captured_output_store=output_store)

# entries with captured output in format { 'out': '...', 'err': '...' } will be added to provided dictionary for each replayed process
print(output_store['radard']['out']) # radard stdout
print(output_store['radard']['err']) # radard stderr