openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

328 lines
17 KiB

from typing import Any, cast
import functools, operator, itertools
from collections import defaultdict
from dataclasses import dataclass
from tinygrad.dtype import dtypes, ImageDType, DType, AddrSpace, Invalid, PtrDType
from tinygrad.uop.ops import UOp, Ops, UPat, PatternMatcher, graph_rewrite, GroupOp, identity_element
from tinygrad.uop.symbolic import uop_given_valid, parse_valid, sym, symbolic, invalid_gate
from tinygrad.helpers import getenv, flatten, AMX, prod
from tinygrad.renderer import Renderer
# ***** image load valid simplification *****
def simplify_valid_load(buf:UOp, start_idx:UOp, valid:UOp) -> UOp|None:
idx = uop_given_valid(valid, start_idx)
if not isinstance(buf.dtype, ImageDType): return None if idx is start_idx else buf.index(idx.valid(valid), ptr=True)
# wait for it to be image indexed before running simplification
if start_idx.dtype.count != 2: return None
# can drop valid if idx is out of bound when valid is False
drop_stmt = []
for stmt in valid.split_uop(Ops.AND):
if (res:=parse_valid(stmt)) is None: continue
X, is_upper_bound, c = res
# for X0 + X1 + ... >= 1, check if it's out of bound when Xi = 0 for all i
if not is_upper_bound and c == 1 and all(u.op in GroupOp.Irreducible and u.vmin == 0 for u in X.split_uop(Ops.ADD)):
testidx = functools.reduce(lambda nowidx,u: nowidx.substitute({u:u.const_like(0)}), X.split_uop(Ops.ADD), idx)
testidx = testidx.simplify()
if testidx.gep(0).vmax < 0 or testidx.gep(1).vmax < 0:
drop_stmt.append(stmt)
continue
# if X <= c, check if it's out of bound when X = c+1
# if X >= c, check if it's out of bound when X = c-1
test_value = c + 1 if is_upper_bound else c - 1
for i,b in zip(idx.src, (buf.dtype.shape[1], buf.dtype.shape[0])):
if i.is_increasing():
rw = i.substitute({X:X.const_like(test_value)}).simplify()
if rw.vmin >= b or rw.vmax < 0:
drop_stmt.append(stmt)
break
if not drop_stmt and idx is start_idx: return None
new_valid = functools.reduce(operator.and_, ss) if (ss:=[s for s in valid.split_uop(Ops.AND) if s not in drop_stmt]) else None
return buf.index(idx.valid(new_valid) if new_valid is not None else idx, ptr=True)
load_store_indexing = PatternMatcher([
# image load valid idx simplification
(UPat(Ops.INDEX, src=(UPat.var("buf"), invalid_gate)), lambda buf,x,i,cond: simplify_valid_load(buf, x, cond)),
# simplify away long after index has been lowered
(UPat(Ops.INDEX, src=(UPat.var("buf"), UPat.var("x", dtypes.long), UPat.var("c", dtypes.bool))), lambda buf,x,c: simplify_valid_load(buf, x, c)),
# drop true gate
(UPat(Ops.INDEX, src=(UPat.var("buf"), UPat.var("x"), UPat.const(dtypes.bool, True)),), lambda buf,x: buf.index(x, ptr=True)),
])
# ***** load/store grouping *****
def expand_index(buf:UOp, vec:UOp):
if getenv("UNSAFE_DISABLE_MASK", 0): vec = vec.get_idx()
# generate the individual indexes
midx = graph_rewrite(UOp.sink(*[buf.index(vec.gep(i), ptr=True) for i in range(vec.dtype.count)]),
symbolic+load_store_indexing, name=f"index_buf_{buf.arg}")
# extract all the relevant offsets
offsets_rootsrc: defaultdict[Any, dict[int, list[int]]] = defaultdict(dict)
for i in range(vec.dtype.count):
idx: Any = midx.src[i].src[1].get_idx()
if idx.op is Ops.ADD and idx.src[1].op is Ops.CONST: root_src, arg = idx.src[0], idx.src[1].arg
elif idx.op is Ops.ADD and idx.src[0].op is Ops.CONST: root_src, arg = idx.src[1], idx.src[0].arg
elif idx.op is Ops.CONST and idx.arg is Invalid: root_src, arg = "INVALID", 0
elif idx.op is Ops.CONST: root_src, arg = "CONST", idx.arg
else: root_src, arg = idx, 0
root_src = (midx.src[i].src[1].get_valid(), root_src)
offsets_rootsrc[root_src].setdefault(arg, []).append(i)
# then rewrite everything we can into groups
ret = []
idxs: list[int|None] = [None]*vec.dtype.count
global_offset = 0
for offsets in offsets_rootsrc.values():
grouped_offsets = [[x for _,x in group] for _,group in itertools.groupby(enumerate(sorted(offsets.keys())), lambda x: x[1]-x[0])]
for grp in grouped_offsets:
# get the index offset for this element. using [0] is okay, because they are the same
lidx = midx.src[offsets[grp[0]][0]]
if len(grp) > 1: lidx = lidx.cast(buf.ptrdtype.base.vec(len(grp)).ptr(size=buf.ptrdtype.size, addrspace=buf.ptrdtype.addrspace))
# set the idxs of the output
for i,g in enumerate(grp):
for oo in offsets[g]: idxs[oo] = global_offset+i
# add this lidx to the CAT
ret.append(lidx)
global_offset += len(grp)
assert None not in idxs, f"some idxs are missing {idxs}"
# this base thing is for image, we want the CAT to be a normal pointer
post_cat = UOp(Ops.PTRCAT, buf.ptrdtype.base.ptr(size=buf.ptrdtype.size, addrspace=buf.ptrdtype.addrspace).vec(global_offset), tuple(ret))
return post_cat.gep(tuple(cast(list[int], idxs)))
def cat_after_store(cat:UOp, data:UOp, sto:UOp):
# TODO: this is written in many places
offset = 0
ret: list[UOp] = []
for s in cat.src:
ret.append(s.store(data.gep(tuple(range(offset, offset+s.dtype.count))), *sto.src[2:]))
offset += s.dtype.count
return UOp.group(*ret)
def gep_on_store(gep:UOp, st:UOp, sto:UOp):
# NOTE: we need to invert the gep here, but it may be an expanding gep
# fake argsort. TODO: handle duplicates
a = {}
for i,x in enumerate(gep.arg): a[x] = i
new_arg = tuple(x[1] for x in sorted(a.items()))
return gep.src[0].store(st.gep(new_arg), *sto.src[2:])
load_store_folding = PatternMatcher([
(UPat(Ops.INDEX, src=(UPat(Ops.VECTORIZE, src=UPat(GroupOp.Defines).or_after(name="buf")), UPat.var("vec"))), expand_index),
# GEP after LOAD
(UPat(Ops.LOAD, src=(UPat(Ops.GEP, name="gep"),), name="ld", allow_any_len=True),
lambda gep, ld: ld.replace(dtype=ld.dtype.scalar().vec(gep.dtype.count), src=(gep.src[0],)+ld.src[1:]).gep(gep.arg)),
# GEP on data of STORE
(UPat(Ops.STORE, src=(UPat(Ops.GEP, name="gep"), UPat.var("st")), allow_any_len=True, name="sto"), gep_on_store),
# put PTRCAT after LOAD
(UPat(Ops.LOAD, src=(UPat(Ops.PTRCAT, name="cat"),), name="ld", allow_any_len=True),
lambda cat,ld: UOp(Ops.CAT, cat.dtype.base.vec(cat.dtype.vcount), tuple(ld.replace(dtype=x.dtype.base, src=(x,)+ld.src[1:]) for x in cat.src))),
# put PTRCAT after STORE
(UPat(Ops.STORE, src=(UPat(Ops.PTRCAT, name="cat"), UPat(name="data")), allow_any_len=True, name="sto"), cat_after_store),
])
# *** correct load/store ***
def split_load_store(ctx:Renderer|None, ls:UOp, idx:UOp):
# this splits loads and stores into multiple chunks
# if there's only one element to load/store, no splitting needed
if (sz:=ls.src[0].dtype.count) == 1: return None
buf = idx.src[0]
# determine fold lengths
lengths = []
must_divide = True
if ctx is not None and ctx.device == "DSP":
lengths = [128,64,32,16,8,4]
must_divide = False
elif buf.dtype.base not in (dtypes.float, dtypes.half, *dtypes.fp8s) and not isinstance(buf.dtype, ImageDType):
pass
elif buf.ptrdtype.addrspace == AddrSpace.REG:
pass
elif isinstance(buf.dtype, ImageDType):
lengths = [4]
elif ctx is not None and ctx.supports_float4:
# TODO: a better way to get this than ctx
lengths = [8,4,2] if buf.dtype.base == dtypes.half and getenv("ALLOW_HALF8") else ([16,8,4,2] if AMX else [4,2])
lengths.append(1) # worst case, it's not folded
# filter fold lengths that don't divide
offset, mask = idx.src[1].get_idx(), idx.src[1].get_valid()
if must_divide: lengths = [x for x in lengths if offset.divides(x) is not None]
# split based on the fold lengths
global_offset = 0
ret = []
while global_offset < sz:
# with 1 at the end of the lengths list, this will always hit
for fold_length in lengths:
if global_offset+fold_length > sz: continue
lidx = buf.index((offset + global_offset).valid(mask), ptr=True)
if fold_length > 1: lidx = lidx.cast(buf.ptrdtype.base.vec(fold_length).ptr(size=buf.ptrdtype.size, addrspace=buf.ptrdtype.addrspace))
if ls.op is Ops.STORE: ret.append(ls.replace(src=(lidx,ls.src[1].gep(tuple(range(global_offset, global_offset+fold_length))))+ls.src[2:]))
else: ret.append(ls.replace(src=(lidx,)+ls.src[1:], dtype=ls.dtype.scalar().vec(fold_length)))
global_offset += fold_length
break
# if it wasn't split, we return None. otherwise we CAT them
if len(ret) <= 1: return None
return UOp(Ops.CAT, ls.dtype, tuple(ret)) if ls.op is Ops.LOAD else UOp.group(*ret)
def image_fixup(ls:UOp):
# normal image load or store, with the CAST from expand_index
if ls.src[0].op is Ops.CAST and isinstance(image_dtype:=ls.src[0].src[0].dtype, ImageDType):
assert ls.src[0].dtype.count == 4, "image must be casted to 4"
idx = ls.src[0].src[0]
x, valid = idx.src[1].get_idx(), idx.src[1].get_valid()
oidx = UOp(Ops.VECTORIZE, dtypes.index.vec(2), ((x // 4) % image_dtype.shape[1], (x // (4*image_dtype.shape[1]))))
idx = idx.replace(src=(idx.src[0], oidx.valid(valid)))
return ls.replace(src=(idx,)+ls.src[1:])
# this is an unprocessed image without a cast, aka unfoldable image load. this doesn't work for stores
if isinstance(image_dtype:=ls.src[0].dtype, ImageDType) and ls.src[0].src[1].get_idx().dtype != dtypes.index.vec(2):
assert ls.op is Ops.LOAD, "if an image store isn't upcasted to 4, we can't store it"
idx = ls.src[0]
x, valid = idx.src[1].get_idx(), idx.src[1].get_valid()
oidx = UOp(Ops.VECTORIZE, dtypes.index.vec(2), ((x // 4) % image_dtype.shape[1], (x // (4*image_dtype.shape[1]))))
idx = idx.replace(src=(idx.src[0], oidx.valid(valid)))
vec_load = ls.replace(dtype=ls.dtype.vec(4), src=(idx,)+ls.src[1:])
return functools.reduce(lambda ret, i: (x % 4).ne(i).where(ret, vec_load.gep(i)), range(4), ls.const_like(float('nan')))
return None
correct_load_store = PatternMatcher([
# split LOAD/STORE
(UPat((Ops.LOAD, Ops.STORE), src=(UPat(Ops.INDEX, name="idx").cast(),), name="ls", allow_any_len=True), split_load_store),
# image indexing, including unfoldable images
(UPat((Ops.LOAD, Ops.STORE), name="ls"), image_fixup),
])
# *** uop expander ***
# TODO: there's a lot shared with gep_through_wmma here
def no_vectorized_wmma(wmma:UOp):
out_sz = prod(x[1] for x in wmma.arg[6][-1])
if wmma.dtype.count == out_sz: return None
tsrcs = []
for s,sz in zip(wmma.src, wmma.arg[6]):
ssz = prod(x[1] for x in sz)
tsrcs.append([s.gep(tuple(range(grp, grp+ssz))) for grp in range(0, s.dtype.count, ssz)])
wmmas = [UOp(Ops.WMMA, wmma.dtype.scalar().vec(out_sz), tsrc, wmma.arg) for tsrc in zip(*tsrcs)]
wmma_ex = flatten([[e.gep(i) for i in range(out_sz)] for e in wmmas])
return UOp(Ops.VECTORIZE, wmma.dtype, tuple(wmma_ex))
def no_vectorized_alu(alu:UOp):
if alu.dtype.vcount == 1: return None
if alu.op is Ops.WHERE and alu.src[2].arg is Invalid: return None # image load/store has cond.where(idx.vec(2), Invalid) as the index
alus = tuple(UOp(alu.op, alu.dtype.scalar(), tuple(s.gep(i) for s in alu.src), alu.arg) for i in range(alu.dtype.vcount))
return UOp(Ops.VECTORIZE, alu.dtype, alus)
def no_vectorized_buf(buf:UOp):
return buf.replace(dtype=buf.ptrdtype.base.scalar().ptr(buf.ptrdtype.size*buf.ptrdtype.count, buf.ptrdtype.addrspace)).cast(buf.dtype)
def no_vectorized_index(buf:UOp, cast:UOp, idx:UOp):
cnt = cast.dtype.count
assert idx.dtype.count == 1, f"idx dtype must be 1 {idx.dtype}"
return buf.broadcast(cnt).index(idx.broadcast(cnt)*cnt+UOp.const(dtypes.index.vec(cnt), tuple(range(cnt))), ptr=True)
def no_vectorized_index_broadcast(buf:UOp, cast:UOp, bcast:UOp, idx:UOp):
cnt = cast.dtype.count
precnt = bcast.dtype.vcount
input_gep = bcast.arg if bcast.op is Ops.GEP else ([0]*precnt)
gep_arg = tuple(flatten([range(precnt) for _ in range(cnt)]))
sum_arg = tuple(flatten([[i+y for y in input_gep] for i in range(cnt)]))
return buf.broadcast(cnt*precnt).index(idx.gep(gep_arg)*cnt+UOp.const(dtypes.index.vec(cnt*precnt), sum_arg), ptr=True)
devectorize_buf_and_index = PatternMatcher([
(UPat((Ops.DEFINE_LOCAL, Ops.DEFINE_REG), name="buf"), no_vectorized_buf),
(UPat((Ops.DEFINE_LOCAL, Ops.DEFINE_REG)).or_after(name="buf").cast(name="cast").index(UPat.var("idx")), no_vectorized_index),
(UPat((Ops.DEFINE_LOCAL, Ops.DEFINE_REG)).or_after(name="buf").cast(name="cast").broadcast(name="bcast").index(UPat.var("idx")),
no_vectorized_index_broadcast),
(UPat((Ops.DEFINE_LOCAL, Ops.DEFINE_REG)).or_after(name="buf").cast(name="cast").gep(name="bcast").index(UPat.var("idx")),
no_vectorized_index_broadcast),
])
devectorize = PatternMatcher([
# CAST after AFTER
(UPat(Ops.CAST, name="c").f(Ops.AFTER, allow_any_len=True, name="a"), lambda c,a: c.src[0].after(*a.src[1:]).cast(c.dtype)),
# no ALU on vectorized dtypes
(UPat((*GroupOp.ALU, Ops.CAST, Ops.BITCAST), name="alu"), no_vectorized_alu),
(UPat(Ops.WMMA, name="wmma"), no_vectorized_wmma),
])+devectorize_buf_and_index
pm_render = PatternMatcher([
# for rendering, we use explicit VECTORIZE
(UPat(Ops.CONST, name='c'),
lambda c: UOp(Ops.VECTORIZE, c.dtype, (UOp.const(c.dtype.scalar(), c.arg),)*c.dtype.vcount) if c.dtype.vcount > 1 else None),
(UPat(Ops.VCONST, name='c'), lambda c: UOp(Ops.VECTORIZE, c.dtype, tuple(UOp.const(c.dtype.scalar(), x) for x in c.arg))),
(UPat(Ops.GEP, name='gep'), lambda gep: UOp(Ops.VECTORIZE, gep.dtype, tuple(gep.src[0].gep(x) for x in gep.arg)) if len(gep.arg) > 1 else None),
(UPat(Ops.GEP, name='gep'), lambda gep: gep.src[0] if gep.src[0].dtype.vcount == 1 and gep.arg == (0,) else None),
(UPat(Ops.VECTORIZE, src=(UPat(name='x'),)), lambda x: x),
# give any loads that are masked an alt value
(UPat(Ops.LOAD, src=(UPat(Ops.INDEX, src=(UPat(), UPat(), UPat())).or_casted(),), allow_any_len=True, name="x"),
lambda x: x.replace(src=(x.src[0], x.const_like(0))+x.src[1:])
if len(x.src) == 1 or x.src[1].op in (Ops.CUSTOM, Ops.STORE, Ops.BARRIER) else None),
# Where after gated load becomes alt value
(UPat.var("c").where(UPat(Ops.LOAD, src=(UPat().index(UPat.var("idx"), UPat.var("c")).or_casted(),), allow_any_len=True, name="l").or_casted(),
UPat.var("a")), lambda c,idx,l,a: l.replace(src=(l.src[0], a.cast(l.dtype))+l.src[2:]).cast(a.dtype)),
(UPat.var("c").where(UPat.var("a"), UPat(Ops.LOAD, src=(UPat().index(UPat.var("idx"), UPat.var("c").logical_not()).or_casted(),),
allow_any_len=True, name="l").or_casted()), lambda c,idx,l,a: l.replace(src=(l.src[0], a.cast(l.dtype))+l.src[2:]).cast(a.dtype)),
])
# *** Ops.REDUCE -> Ops.DEFINE_ACC ***
@dataclass
class ReduceContext:
acc_num: int = 0
def horizontal_reduce(inp:UOp, out_dtype:DType) -> list[UOp]:
# if this has a horizontal reduction component, do that first
if inp.dtype != out_dtype:
# NOTE: [0 1 2 3 4 5 6 7] -> [0+4, 1+5, 2+6, 3+7]
horizontal_amount = inp.dtype.count//out_dtype.count
return [inp.gep(tuple(range(i, inp.dtype.count, horizontal_amount))) for i in range(0, horizontal_amount)]
return [inp]
def reduce_to_acc(ctx:ReduceContext, red:UOp):
inp, reduce_range = red.src[0], red.src[1:]
lst = horizontal_reduce(inp, red.dtype)
assert all(x.dtype == red.dtype for x in lst), f"horizontal reduction mismatch {lst[0].dtype} != {red.dtype}"
# if we have a range
if len(reduce_range) != 0:
topo = inp.toposort()
ended_ranges = flatten([x.ended_ranges for x in topo if x.op is Ops.END])
input_ranges = tuple([x for x in topo if x.op is Ops.RANGE and x not in reduce_range and x not in ended_ranges])
identity = red.const(red.dtype, identity_element(red.arg, red.dtype.scalar()))
acc = UOp(Ops.DEFINE_REG, red.dtype.ptr(size=1, addrspace=AddrSpace.REG), arg=ctx.acc_num)
acc_init = acc.after(*input_ranges).index(UOp.const(dtypes.int, 0)).store(identity) if len(input_ranges) else \
acc.index(UOp.const(dtypes.int, 0)).store(identity)
lst = [acc.after(acc_init, *reduce_range).index(UOp.const(dtypes.int, 0))] + lst # put acc as the first element
ctx.acc_num += 1
ret = functools.reduce(lambda x,y: x.alu(red.arg, y), lst)
if len(reduce_range) == 0: return ret
return acc.after(acc.index(UOp.const(dtypes.int, 0)).store(ret).end(*reduce_range)).index(UOp.const(dtypes.int, 0))
pm_reduce = PatternMatcher([
# REDUCE -> DEFINE_ACC+ASSIGN
(UPat(Ops.REDUCE, name="red"), reduce_to_acc),
# tensor core built in accumulate
(UPat(Ops.WMMA, name="wmma") + UPat.var("add"),
lambda add, wmma: UOp(wmma.op, wmma.dtype, (wmma.src[0], wmma.src[1], wmma.src[2]+add), wmma.arg)),
])+sym
# add loads
pm_add_loads = PatternMatcher([
# add loads to non ptr index
(UPat(Ops.INDEX, name="idx"), lambda idx: None if isinstance(idx.dtype, (PtrDType, ImageDType)) else
idx.replace(dtype=idx.src[0].dtype).load(dtype=idx.dtype.base)),
# remove loads from stores
(UPat(Ops.STORE, src=(UPat(Ops.LOAD),), allow_any_len=True, name="s"), lambda s: s.replace(src=(s.src[0].src[0],)+s.src[1:])),
])