You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							138 lines
						
					
					
						
							4.5 KiB
						
					
					
				
			
		
		
	
	
							138 lines
						
					
					
						
							4.5 KiB
						
					
					
				| import time
 | |
| import unittest
 | |
| import numpy as np
 | |
| from fastcluster import linkage_vector
 | |
| from scipy.cluster import _hierarchy
 | |
| from scipy.spatial.distance import pdist
 | |
| 
 | |
| from selfdrive.controls.lib.cluster.fastcluster_py import hclust, ffi
 | |
| from selfdrive.controls.lib.cluster.fastcluster_py import cluster_points_centroid
 | |
| 
 | |
| 
 | |
| def fcluster(Z, t, criterion='inconsistent', depth=2, R=None, monocrit=None):
 | |
|   # supersimplified function to get fast clustering. Got it from scipy
 | |
|   Z = np.asarray(Z, order='c')
 | |
|   n = Z.shape[0] + 1
 | |
|   T = np.zeros((n,), dtype='i')
 | |
|   _hierarchy.cluster_dist(Z, T, float(t), int(n))
 | |
|   return T
 | |
| 
 | |
| 
 | |
| TRACK_PTS = np.array([[59.26000137, -9.35999966, -5.42500019],
 | |
|                       [91.61999817, -0.31999999, -2.75],
 | |
|                       [31.38000031, 0.40000001, -0.2],
 | |
|                       [89.57999725, -8.07999992, -18.04999924],
 | |
|                       [53.42000122, 0.63999999, -0.175],
 | |
|                       [31.38000031, 0.47999999, -0.2],
 | |
|                       [36.33999939, 0.16, -0.2],
 | |
|                       [53.33999939, 0.95999998, -0.175],
 | |
|                       [59.26000137, -9.76000023, -5.44999981],
 | |
|                       [33.93999977, 0.40000001, -0.22499999],
 | |
|                       [106.74000092, -5.76000023, -18.04999924]])
 | |
| 
 | |
| CORRECT_LINK = np.array([[2., 5., 0.07999998, 2.],
 | |
|                          [4., 7., 0.32984889, 2.],
 | |
|                          [0., 8., 0.40078104, 2.],
 | |
|                          [6., 9., 2.41209933, 2.],
 | |
|                          [11., 14., 3.76342275, 4.],
 | |
|                          [12., 13., 13.02297651, 4.],
 | |
|                          [1., 3., 17.27626057, 2.],
 | |
|                          [10., 17., 17.92918845, 3.],
 | |
|                          [15., 16., 23.68525366, 8.],
 | |
|                          [18., 19., 52.52351319, 11.]])
 | |
| 
 | |
| CORRECT_LABELS = np.array([7, 1, 4, 2, 6, 4, 5, 6, 7, 5, 3], dtype=np.int32)
 | |
| 
 | |
| 
 | |
| def plot_cluster(pts, idx_old, idx_new):
 | |
|     import matplotlib.pyplot as plt
 | |
|     m = 'Set1'
 | |
| 
 | |
|     plt.figure()
 | |
|     plt.subplot(1, 2, 1)
 | |
|     plt.scatter(pts[:, 0], pts[:, 1], c=idx_old, cmap=m)
 | |
|     plt.title("Old")
 | |
|     plt.colorbar()
 | |
|     plt.subplot(1, 2, 2)
 | |
|     plt.scatter(pts[:, 0], pts[:, 1], c=idx_new, cmap=m)
 | |
|     plt.title("New")
 | |
|     plt.colorbar()
 | |
| 
 | |
|     plt.show()
 | |
| 
 | |
| 
 | |
| def same_clusters(correct, other):
 | |
|   correct = np.asarray(correct)
 | |
|   other = np.asarray(other)
 | |
|   if len(correct) != len(other):
 | |
|     return False
 | |
| 
 | |
|   for i in range(len(correct)):
 | |
|     c = np.where(correct == correct[i])
 | |
|     o = np.where(other == other[i])
 | |
|     if not np.array_equal(c, o):
 | |
|       return False
 | |
|   return True
 | |
| 
 | |
| 
 | |
| class TestClustering(unittest.TestCase):
 | |
|   def test_scipy_clustering(self):
 | |
|     old_link = linkage_vector(TRACK_PTS, method='centroid')
 | |
|     old_cluster_idxs = fcluster(old_link, 2.5, criterion='distance')
 | |
| 
 | |
|     np.testing.assert_allclose(old_link, CORRECT_LINK)
 | |
|     np.testing.assert_allclose(old_cluster_idxs, CORRECT_LABELS)
 | |
| 
 | |
|   def test_pdist(self):
 | |
|     pts = np.ascontiguousarray(TRACK_PTS, dtype=np.float64)
 | |
|     pts_ptr = ffi.cast("double *", pts.ctypes.data)
 | |
| 
 | |
|     n, m = pts.shape
 | |
|     out = np.zeros((n * (n - 1) // 2, ), dtype=np.float64)
 | |
|     out_ptr = ffi.cast("double *", out.ctypes.data)
 | |
|     hclust.hclust_pdist(n, m, pts_ptr, out_ptr)
 | |
| 
 | |
|     np.testing.assert_allclose(out, np.power(pdist(TRACK_PTS), 2))
 | |
| 
 | |
|   def test_cpp_clustering(self):
 | |
|     pts = np.ascontiguousarray(TRACK_PTS, dtype=np.float64)
 | |
|     pts_ptr = ffi.cast("double *", pts.ctypes.data)
 | |
|     n, m = pts.shape
 | |
| 
 | |
|     labels = np.zeros((n, ), dtype=np.int32)
 | |
|     labels_ptr = ffi.cast("int *", labels.ctypes.data)
 | |
|     hclust.cluster_points_centroid(n, m, pts_ptr, 2.5**2, labels_ptr)
 | |
|     self.assertTrue(same_clusters(CORRECT_LABELS, labels))
 | |
| 
 | |
|   def test_cpp_wrapper_clustering(self):
 | |
|     labels = cluster_points_centroid(TRACK_PTS, 2.5)
 | |
|     self.assertTrue(same_clusters(CORRECT_LABELS, labels))
 | |
| 
 | |
|   def test_random_cluster(self):
 | |
|     np.random.seed(1337)
 | |
|     N = 1000
 | |
| 
 | |
|     t_old = 0.
 | |
|     t_new = 0.
 | |
| 
 | |
|     for _ in range(N):
 | |
|       n = int(np.random.uniform(2, 32))
 | |
|       x = np.random.uniform(-10, 50, (n, 1))
 | |
|       y = np.random.uniform(-5, 5, (n, 1))
 | |
|       vrel = np.random.uniform(-5, 5, (n, 1))
 | |
|       pts = np.hstack([x, y, vrel])
 | |
| 
 | |
|       t = time.time()
 | |
|       old_link = linkage_vector(pts, method='centroid')
 | |
|       old_cluster_idx = fcluster(old_link, 2.5, criterion='distance')
 | |
|       t_old += time.time() - t
 | |
| 
 | |
|       t = time.time()
 | |
|       cluster_idx = cluster_points_centroid(pts, 2.5)
 | |
|       t_new += time.time() - t
 | |
| 
 | |
|       self.assertTrue(same_clusters(old_cluster_idx, cluster_idx))
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|   unittest.main()
 | |
| 
 |