You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							96 lines
						
					
					
						
							2.6 KiB
						
					
					
				
			
		
		
	
	
							96 lines
						
					
					
						
							2.6 KiB
						
					
					
				import timeit
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import numpy.linalg
 | 
						|
from scipy.linalg import cho_factor, cho_solve
 | 
						|
 | 
						|
# We are trying to solve the following system
 | 
						|
# (A.T * A) * x = A.T * b
 | 
						|
# Where x are the polynomial coefficients and b is are the input points
 | 
						|
 | 
						|
# First we build A
 | 
						|
deg = 3
 | 
						|
x = np.arange(50 * 1.0)
 | 
						|
A = np.vstack(tuple(x**n for n in range(deg, -1, -1))).T
 | 
						|
 | 
						|
# The first way to solve this is using the pseudoinverse, which can be precomputed
 | 
						|
# x = (A.T * A)^-1 * A^T * b = PINV b
 | 
						|
PINV = np.linalg.pinv(A)
 | 
						|
 | 
						|
# Another way is using the Cholesky decomposition
 | 
						|
# We can note that at (A.T * A) is always positive definite
 | 
						|
# By precomputing the Cholesky decomposition we can efficiently solve
 | 
						|
# systems of the form (A.T * A) x = c
 | 
						|
CHO = cho_factor(np.dot(A.T, A))
 | 
						|
 | 
						|
 | 
						|
def model_polyfit_old(points, deg=3):
 | 
						|
  A = np.vstack(tuple(x**n for n in range(deg, -1, -1))).T
 | 
						|
  pinv = np.linalg.pinv(A)
 | 
						|
  return np.dot(pinv, map(float, points))
 | 
						|
 | 
						|
 | 
						|
def model_polyfit(points, deg=3):
 | 
						|
  A = np.vander(x, deg + 1)
 | 
						|
  pinv = np.linalg.pinv(A)
 | 
						|
  return np.dot(pinv, map(float, points))
 | 
						|
 | 
						|
 | 
						|
def model_polyfit_cho(points, deg=3):
 | 
						|
  A = np.vander(x, deg + 1)
 | 
						|
  cho = cho_factor(np.dot(A.T, A))
 | 
						|
  c = np.dot(A.T, points)
 | 
						|
  return cho_solve(cho, c, check_finite=False)
 | 
						|
 | 
						|
 | 
						|
def model_polyfit_np(points, deg=3):
 | 
						|
  return np.polyfit(x, points, deg)
 | 
						|
 | 
						|
 | 
						|
def model_polyfit_lstsq(points, deg=3):
 | 
						|
  A = np.vander(x, deg + 1)
 | 
						|
  return np.linalg.lstsq(A, points, rcond=None)[0]
 | 
						|
 | 
						|
 | 
						|
TEST_DATA = np.linspace(0, 5, num=50) + 1.
 | 
						|
 | 
						|
 | 
						|
def time_pinv_old():
 | 
						|
  model_polyfit_old(TEST_DATA)
 | 
						|
 | 
						|
 | 
						|
def time_pinv():
 | 
						|
  model_polyfit(TEST_DATA)
 | 
						|
 | 
						|
 | 
						|
def time_cho():
 | 
						|
  model_polyfit_cho(TEST_DATA)
 | 
						|
 | 
						|
 | 
						|
def time_np():
 | 
						|
  model_polyfit_np(TEST_DATA)
 | 
						|
 | 
						|
 | 
						|
def time_lstsq():
 | 
						|
  model_polyfit_lstsq(TEST_DATA)
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
  # Verify correct results
 | 
						|
  pinv_old = model_polyfit_old(TEST_DATA)
 | 
						|
  pinv = model_polyfit(TEST_DATA)
 | 
						|
  cho = model_polyfit_cho(TEST_DATA)
 | 
						|
  numpy = model_polyfit_np(TEST_DATA)
 | 
						|
  lstsq = model_polyfit_lstsq(TEST_DATA)
 | 
						|
 | 
						|
  assert all(np.isclose(pinv, pinv_old))
 | 
						|
  assert all(np.isclose(pinv, cho))
 | 
						|
  assert all(np.isclose(pinv, numpy))
 | 
						|
  assert all(np.isclose(pinv, lstsq))
 | 
						|
 | 
						|
  # Run benchmark
 | 
						|
  print("Pseudo inverse (old)", timeit.timeit("time_pinv_old()", setup="from __main__ import time_pinv_old", number=10000))
 | 
						|
  print("Pseudo inverse", timeit.timeit("time_pinv()", setup="from __main__ import time_pinv", number=10000))
 | 
						|
  print("Cholesky", timeit.timeit("time_cho()", setup="from __main__ import time_cho", number=10000))
 | 
						|
  print("Numpy leastsq", timeit.timeit("time_lstsq()", setup="from __main__ import time_lstsq", number=10000))
 | 
						|
  print("Numpy polyfit", timeit.timeit("time_np()", setup="from __main__ import time_np", number=10000))
 | 
						|
 |