openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

42 lines
1.6 KiB

#!/usr/bin/env python3
import numpy as np
import random
from tinygrad.nn.state import get_parameters
from tinygrad.nn.optim import Adam
from extra.training import train, evaluate
from extra.models.transformer import Transformer
# dataset idea from https://github.com/karpathy/minGPT/blob/master/projects/adder/adder.py
def make_dataset():
ds = []
for i in range(100):
for j in range(100):
s = i+j
ds.append([i//10, i%10, j//10, j%10, s//100, (s//10)%10, s%10])
random.shuffle(ds)
ds = np.array(ds).astype(np.float32)
ds_X = ds[:, 0:6]
ds_Y = np.copy(ds[:, 1:])
ds_X_train, ds_X_test = ds_X[0:8000], ds_X[8000:]
ds_Y_train, ds_Y_test = ds_Y[0:8000], ds_Y[8000:]
return ds_X_train, ds_Y_train, ds_X_test, ds_Y_test
if __name__ == "__main__":
model = Transformer(10, 6, 2, 128, 4, 32)
X_train, Y_train, X_test, Y_test = make_dataset()
lr = 0.003
for i in range(10):
optim = Adam(get_parameters(model), lr=lr)
train(model, X_train, Y_train, optim, 50, BS=64, allow_jit=True)
acc, Y_test_preds = evaluate(model, X_test, Y_test, num_classes=10, return_predict=True)
lr /= 1.2
print(f'reducing lr to {lr:.4f}')
if acc > 0.998:
wrong=0
for k in range(len(Y_test_preds)):
if (Y_test_preds[k] != Y_test[k]).any():
wrong+=1
a,b,c,x = X_test[k,:2].astype(np.int32), X_test[k,2:4].astype(np.int32), Y_test[k,-3:].astype(np.int32), Y_test_preds[k,-3:].astype(np.int32)
print(f'{a[0]}{a[1]} + {b[0]}{b[1]} = {x[0]}{x[1]}{x[2]} (correct: {c[0]}{c[1]}{c[2]})')
print(f'Wrong predictions: {wrong}, acc = {acc:.4f}')