openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

124 lines
5.0 KiB

#!/usr/bin/env python3
import math
import numpy as np
from common.numpy_fast import interp
import cereal.messaging as messaging
from common.realtime import DT_MDL
from selfdrive.modeld.constants import T_IDXS
from selfdrive.config import Conversions as CV
from selfdrive.controls.lib.longcontrol import LongCtrlState
from selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc
from selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC
from selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX, CONTROL_N
from selfdrive.swaglog import cloudlog
LON_MPC_STEP = 0.2 # first step is 0.2s
AWARENESS_DECEL = -0.2 # car smoothly decel at .2m/s^2 when user is distracted
A_CRUISE_MIN = -1.2
A_CRUISE_MAX_VALS = [1.2, 1.2, 0.8, 0.6]
A_CRUISE_MAX_BP = [0., 15., 25., 40.]
# Lookup table for turns
_A_TOTAL_MAX_V = [1.7, 3.2]
_A_TOTAL_MAX_BP = [20., 40.]
def get_max_accel(v_ego):
return interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS)
def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
"""
This function returns a limited long acceleration allowed, depending on the existing lateral acceleration
this should avoid accelerating when losing the target in turns
"""
a_total_max = interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
a_y = v_ego ** 2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase)
a_x_allowed = math.sqrt(max(a_total_max ** 2 - a_y ** 2, 0.))
return [a_target[0], min(a_target[1], a_x_allowed)]
class Planner:
def __init__(self, CP, init_v=0.0, init_a=0.0):
self.CP = CP
self.mpc = LongitudinalMpc()
self.fcw = False
self.v_desired = init_v
self.a_desired = init_a
self.alpha = np.exp(-DT_MDL / 2.0)
self.v_desired_trajectory = np.zeros(CONTROL_N)
self.a_desired_trajectory = np.zeros(CONTROL_N)
self.j_desired_trajectory = np.zeros(CONTROL_N)
def update(self, sm):
v_ego = sm['carState'].vEgo
a_ego = sm['carState'].aEgo
v_cruise_kph = sm['controlsState'].vCruise
v_cruise_kph = min(v_cruise_kph, V_CRUISE_MAX)
v_cruise = v_cruise_kph * CV.KPH_TO_MS
long_control_state = sm['controlsState'].longControlState
force_slow_decel = sm['controlsState'].forceDecel
prev_accel_constraint = True
if long_control_state == LongCtrlState.off or sm['carState'].gasPressed:
self.v_desired = v_ego
self.a_desired = a_ego
# Smoothly changing between accel trajectory is only relevant when OP is driving
prev_accel_constraint = False
# Prevent divergence, smooth in current v_ego
self.v_desired = self.alpha * self.v_desired + (1 - self.alpha) * v_ego
self.v_desired = max(0.0, self.v_desired)
accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)]
accel_limits_turns = limit_accel_in_turns(v_ego, sm['carState'].steeringAngleDeg, accel_limits, self.CP)
if force_slow_decel:
# if required so, force a smooth deceleration
accel_limits_turns[1] = min(accel_limits_turns[1], AWARENESS_DECEL)
accel_limits_turns[0] = min(accel_limits_turns[0], accel_limits_turns[1])
# clip limits, cannot init MPC outside of bounds
accel_limits_turns[0] = min(accel_limits_turns[0], self.a_desired + 0.05)
accel_limits_turns[1] = max(accel_limits_turns[1], self.a_desired - 0.05)
self.mpc.set_accel_limits(accel_limits_turns[0], accel_limits_turns[1])
self.mpc.set_cur_state(self.v_desired, self.a_desired)
self.mpc.update(sm['carState'], sm['radarState'], v_cruise, prev_accel_constraint=prev_accel_constraint)
self.v_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC, self.mpc.v_solution)
self.a_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC, self.mpc.a_solution)
self.j_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC[:-1], self.mpc.j_solution)
# TODO counter is only needed because radar is glitchy, remove once radar is gone
self.fcw = self.mpc.crash_cnt > 5
if self.fcw:
cloudlog.info("FCW triggered")
# Interpolate 0.05 seconds and save as starting point for next iteration
a_prev = self.a_desired
self.a_desired = float(interp(DT_MDL, T_IDXS[:CONTROL_N], self.a_desired_trajectory))
self.v_desired = self.v_desired + DT_MDL * (self.a_desired + a_prev) / 2.0
def publish(self, sm, pm):
plan_send = messaging.new_message('longitudinalPlan')
plan_send.valid = sm.all_alive_and_valid(service_list=['carState', 'controlsState'])
longitudinalPlan = plan_send.longitudinalPlan
longitudinalPlan.modelMonoTime = sm.logMonoTime['modelV2']
longitudinalPlan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.logMonoTime['modelV2']
longitudinalPlan.speeds = [float(x) for x in self.v_desired_trajectory]
longitudinalPlan.accels = [float(x) for x in self.a_desired_trajectory]
longitudinalPlan.jerks = [float(x) for x in self.j_desired_trajectory]
longitudinalPlan.hasLead = sm['radarState'].leadOne.status
longitudinalPlan.longitudinalPlanSource = self.mpc.source
longitudinalPlan.fcw = self.fcw
pm.send('longitudinalPlan', plan_send)