openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

91 lines
3.4 KiB

from typing import cast
from dataclasses import dataclass, field
from collections import deque, defaultdict
from tinygrad.uop.ops import UOp, Variable, Ops, UPat, PatternMatcher, graph_rewrite, buffers
from tinygrad.device import Buffer, MultiBuffer
from tinygrad.helpers import Metadata, unwrap, merge_dicts
# **** ScheduleItem return type
@dataclass(frozen=True)
class ScheduleItem:
ast: UOp
bufs: tuple[Buffer, ...]
metadata: tuple[Metadata, ...] = ()
fixedvars: dict[Variable, int] = field(default_factory=dict)
# **** unbind Variables
def unbind_view(ctx:list[dict[Variable, int]], x:UOp):
st = unwrap(x.st).simplify()
if any(x.op is Ops.BIND for x in st.vars()):
st, var_vals = st.unbind()
ctx.append(var_vals)
return x.replace(arg=st)
return None
def unbind_bind(ctx:list[dict[Variable, int]], x:UOp):
var, val = x.unbind()
ctx.append({var.replace(src=()):val})
return var
pm_unbind = PatternMatcher([
(UPat(Ops.VIEW, name="x"), unbind_view),
(UPat(Ops.BIND, name="x"), unbind_bind),
])
# **** schedule linearizer
def create_schedule_with_vars(sched_sink:UOp) -> tuple[list[ScheduleItem], dict[Variable, int]]:
# construct the KERNEL children graph based on assigns
children: defaultdict[UOp, list[UOp]] = defaultdict(list)
in_degree: dict[UOp, int] = {}
for u in sched_sink.toposort():
if u.op is not Ops.ASSIGN: continue # anything that's not an ASSIGN doesn't write a kernel, so we can skip
k = u.src[1]
in_degree.setdefault(k, 0)
for s in k.src:
if s.op is Ops.ASSIGN:
children[s.src[1]].append(k)
in_degree[k] += 1
elif s.op in {Ops.MSELECT, Ops.MSTACK}:
for ss in s.src:
if ss.op is Ops.MSELECT: ss = ss.src[0]
if ss.op is not Ops.BUFFER:
assert ss.op is Ops.ASSIGN
children[ss.src[1]].append(k)
in_degree[k] += 1
elif s.op is Ops.BUFFER:
pass # a BUFFER is already realized, nothing to do here
else:
raise RuntimeError(f"input to kernel must be ASSIGN or BUFFER, not {s.op}")
# linearize KERNEL UOps into ScheduleItems in BFS order
queue = deque(k for k,v in in_degree.items() if v == 0)
schedule: list[ScheduleItem] = []
var_vals: dict[Variable, int] = {}
while queue:
k = queue.popleft()
# unbind var_vals from the kernel
local_var_vals: list[dict[Variable, int]] = []
ast = graph_rewrite(k.arg.ast, pm_unbind, ctx=local_var_vals, name="unbind vars")
var_vals = merge_dicts([var_vals, *local_var_vals])
# create subbuffers if needed
if ast.op is Ops.BUFFER_VIEW:
base = k.src[1].buf_uop.buffer
assert isinstance(base, Buffer), "base can't be MultiBuffer"
buffers[k.src[0]] = base.view(k.size, ast.dtype, ast.arg[1]*base.dtype.itemsize)
ubufs = tuple(s.buf_uop.buffer for s in k.src)
if any(isinstance(x, MultiBuffer) for x in ubufs):
assert all(isinstance(x, MultiBuffer) for x in ubufs), "kernel must all be multibuffer"
dnums = [x for x in ast.variables() if x.arg[0] == '_device_num']
for i,bufs in enumerate(zip(*[x.bufs for x in cast(tuple[MultiBuffer, ...], ubufs)])):
schedule.append(ScheduleItem(ast, bufs, k.arg.metadata, {dnums[0]:i} if len(dnums) else {}))
else:
# ONE -> ONE
schedule.append(ScheduleItem(ast, cast(tuple[Buffer, ...], ubufs), k.arg.metadata))
for x in children[k]:
in_degree[x] -= 1
if in_degree[x] == 0: queue.append(x)
return schedule, var_vals