You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
139 lines
6.3 KiB
139 lines
6.3 KiB
import unittest, onnx, tempfile, pathlib
|
|
import numpy as np
|
|
from tinygrad import dtypes, Tensor
|
|
from tinygrad.uop.ops import Ops
|
|
from tinygrad.device import is_dtype_supported
|
|
from extra.onnx import data_types
|
|
from tinygrad.frontend.onnx import OnnxRunner
|
|
from hypothesis import given, strategies as st
|
|
|
|
# copied from test_const_folding.py
|
|
def _check_ast_count(desired_count:int, t:Tensor):
|
|
# NOTE: this has side effect because everything can be scheduled only once
|
|
schedule = t.schedule()
|
|
asts = [s for s in schedule if s.ast.op is Ops.SINK]
|
|
assert len(asts) == desired_count, f"{len(asts)} != {desired_count}"
|
|
|
|
def build_onnx(nodes, from_disk:bool=True, **kwargs):
|
|
"""Helper to build and return an OnnxRunner from ONNX nodes."""
|
|
graph = onnx.helper.make_graph(nodes, 'test', kwargs.get('inputs', []), kwargs.get('outputs', []), kwargs.get('initializers', []))
|
|
model = onnx.helper.make_model(graph)
|
|
if from_disk:
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
tmp_path = pathlib.Path(tmpdir)
|
|
model_path = tmp_path / "model.onnx"
|
|
onnx.save(model, model_path)
|
|
runner = OnnxRunner(model_path)
|
|
else:
|
|
# use the in-memory method
|
|
runner = OnnxRunner(Tensor(model.SerializeToString(), device="PYTHON"))
|
|
return runner
|
|
|
|
class TestOnnxRunner(unittest.TestCase):
|
|
def _test_const_fold_unary_op(self, from_disk:bool):
|
|
runner = build_onnx(
|
|
nodes=[
|
|
onnx.helper.make_node('Expand', ['inp', 'shape'], ['expanded']),
|
|
onnx.helper.make_node('Exp', ['expanded'], ['output'])
|
|
],
|
|
outputs=[onnx.helper.make_tensor_value_info('output', onnx.TensorProto.FLOAT, (5,))],
|
|
initializers=[
|
|
onnx.helper.make_tensor('inp', onnx.TensorProto.FLOAT, (), [1.0]),
|
|
onnx.helper.make_tensor('shape', onnx.TensorProto.INT64, (1,), [5])
|
|
],
|
|
from_disk=from_disk)
|
|
output = runner({'inp': Tensor([1.0])})['output']
|
|
_check_ast_count(0, output)
|
|
|
|
def _test_const_fold_binary_op(self, from_disk:bool):
|
|
runner = build_onnx(
|
|
nodes=[onnx.helper.make_node('Add', ['inp', 'const'], ['output'])],
|
|
outputs=[onnx.helper.make_tensor_value_info('output', onnx.TensorProto.FLOAT, (4,))],
|
|
initializers=[
|
|
onnx.helper.make_tensor('inp', onnx.TensorProto.FLOAT, (4,), [1, 2, 3, 4]),
|
|
onnx.helper.make_tensor('const', onnx.TensorProto.FLOAT, (), [0])
|
|
],
|
|
from_disk=from_disk)
|
|
output = runner({'inp': Tensor([1, 2, 3, 4])})['output']
|
|
_check_ast_count(0, output)
|
|
|
|
def test_const_fold_from_disk(self):
|
|
self._test_const_fold_unary_op(True)
|
|
self._test_const_fold_binary_op(True)
|
|
|
|
def test_const_fold_from_memory(self):
|
|
self._test_const_fold_unary_op(False)
|
|
# TODO: understand this and fix this, bitcast related
|
|
# self._test_const_fold_binary_op(False)
|
|
|
|
def test_external_data_loading(self):
|
|
weights = np.arange(4, dtype=np.float32)
|
|
tensor_with_data = onnx.helper.make_tensor('weights', onnx.TensorProto.FLOAT, weights.shape, weights.tobytes(), raw=True)
|
|
graph = onnx.helper.make_graph(
|
|
nodes=[onnx.helper.make_node('Add', ['inp', 'weights'], ['output'])],
|
|
name='test_external',
|
|
inputs=[onnx.helper.make_tensor_value_info('inp', onnx.TensorProto.FLOAT, (1,))],
|
|
outputs=[onnx.helper.make_tensor_value_info('output', onnx.TensorProto.FLOAT, weights.shape)],
|
|
initializer=[tensor_with_data]
|
|
)
|
|
model = onnx.helper.make_model(graph)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
tmp_path = pathlib.Path(tmpdir)
|
|
model_path = tmp_path / "model.onnx"
|
|
onnx.save_model(model, model_path, save_as_external_data=True, all_tensors_to_one_file=True, size_threshold=0, location="weights.onnx_data")
|
|
runner = OnnxRunner(model_path)
|
|
output = runner({'inp': Tensor([1])})['output']
|
|
np.testing.assert_equal(output.numpy(), weights + 1)
|
|
|
|
all_dtypes = list(data_types.keys())
|
|
device_supported_dtypes = {odt for odt, dtype in data_types.items() if is_dtype_supported(dtype)}
|
|
|
|
class TestOnnxRunnerDtypes(unittest.TestCase):
|
|
"""
|
|
Internal tensors (initializers, attributes) fallback to default dtype if unsupported by device.
|
|
External tensors (inputs) preserve their original dtype - user must ensure compatibility with device.
|
|
"""
|
|
def _get_expected_dtype(self, onnx_dtype: int, is_input: bool):
|
|
true_dtype = data_types[onnx_dtype]
|
|
# inputs always preserve their true dtype.
|
|
if is_input:
|
|
return true_dtype
|
|
# supported types are always themselves.
|
|
if onnx_dtype in device_supported_dtypes:
|
|
return true_dtype
|
|
# otherwise it's an unsupported dtype that's internal to the ONNX model, which should fallback to default.
|
|
return dtypes.default_int if dtypes.is_int(true_dtype) else dtypes.default_float
|
|
|
|
@given(onnx_dtype=st.sampled_from(all_dtypes))
|
|
def test_input_dtype(self, onnx_dtype: int):
|
|
expected_dtype = self._get_expected_dtype(onnx_dtype, True)
|
|
runner = build_onnx(
|
|
nodes=[onnx.helper.make_node('Identity', ['input'], ['output'])],
|
|
inputs=[onnx.helper.make_tensor_value_info('input', onnx_dtype, ())],
|
|
outputs=[onnx.helper.make_tensor_value_info('output', onnx_dtype, ())],
|
|
from_disk=False)
|
|
self.assertEqual(runner.graph_inputs['input'].dtype, expected_dtype)
|
|
|
|
@given(onnx_dtype=st.sampled_from(all_dtypes))
|
|
def test_initializer_dtype(self, onnx_dtype: int):
|
|
expected_dtype = self._get_expected_dtype(onnx_dtype, False)
|
|
runner = build_onnx(
|
|
nodes=[onnx.helper.make_node('Identity', ['initializer'], ['output'])],
|
|
outputs=[onnx.helper.make_tensor_value_info('output', onnx_dtype, (2,))],
|
|
initializers=[onnx.helper.make_tensor('initializer', onnx_dtype, (2,), [1, 2])],
|
|
from_disk=False)
|
|
self.assertEqual(runner.graph_values['initializer'].dtype, expected_dtype)
|
|
|
|
@given(onnx_dtype=st.sampled_from(all_dtypes))
|
|
def test_node_attribute_dtype(self, onnx_dtype: int):
|
|
expected_dtype = self._get_expected_dtype(onnx_dtype, False)
|
|
value_tensor = onnx.helper.make_tensor('value', onnx_dtype, (2,), [1, 2])
|
|
runner = build_onnx(
|
|
nodes=[onnx.helper.make_node('Constant', [], ['output'], value=value_tensor)],
|
|
outputs=[onnx.helper.make_tensor_value_info('output', onnx_dtype, (2,))],
|
|
from_disk=False)
|
|
self.assertEqual(runner.graph_nodes[0].opts['value'].dtype, expected_dtype)
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main() |