openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

81 lines
2.8 KiB

from common.numpy_fast import interp
import numpy as np
CAMERA_OFFSET = 0.06 # m from center car to camera
def compute_path_pinv(l=50):
deg = 3
x = np.arange(l*1.0)
X = np.vstack(tuple(x**n for n in range(deg, -1, -1))).T
pinv = np.linalg.pinv(X)
return pinv
def model_polyfit(points, path_pinv):
return np.dot(path_pinv, [float(x) for x in points])
def calc_d_poly(l_poly, r_poly, p_poly, l_prob, r_prob, lane_width):
# This will improve behaviour when lanes suddenly widen
lane_width = min(4.0, lane_width)
l_prob = l_prob * interp(abs(l_poly[3]), [2, 2.5], [1.0, 0.0])
r_prob = r_prob * interp(abs(r_poly[3]), [2, 2.5], [1.0, 0.0])
path_from_left_lane = l_poly.copy()
path_from_left_lane[3] -= lane_width / 2.0
path_from_right_lane = r_poly.copy()
path_from_right_lane[3] += lane_width / 2.0
lr_prob = l_prob * r_prob
d_poly_lane = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001)
return lr_prob * d_poly_lane + (1.0 - lr_prob) * p_poly
class LanePlanner(object):
def __init__(self):
self.l_poly = [0., 0., 0., 0.]
self.r_poly = [0., 0., 0., 0.]
self.p_poly = [0., 0., 0., 0.]
self.d_poly = [0., 0., 0., 0.]
self.lane_width_estimate = 3.7
self.lane_width_certainty = 1.0
self.lane_width = 3.7
self.l_prob = 0.
self.r_prob = 0.
self._path_pinv = compute_path_pinv()
self.x_points = np.arange(50)
def parse_model(self, md):
if len(md.leftLane.poly):
self.l_poly = np.array(md.leftLane.poly)
self.r_poly = np.array(md.rightLane.poly)
self.p_poly = np.array(md.path.poly)
else:
self.l_poly = model_polyfit(md.leftLane.points, self._path_pinv) # left line
self.r_poly = model_polyfit(md.rightLane.points, self._path_pinv) # right line
self.p_poly = model_polyfit(md.path.points, self._path_pinv) # predicted path
self.l_prob = md.leftLane.prob # left line prob
self.r_prob = md.rightLane.prob # right line prob
def update_lane(self, v_ego):
# only offset left and right lane lines; offsetting p_poly does not make sense
self.l_poly[3] += CAMERA_OFFSET
self.r_poly[3] += CAMERA_OFFSET
# Find current lanewidth
self.lane_width_certainty += 0.05 * (self.l_prob * self.r_prob - self.lane_width_certainty)
current_lane_width = abs(self.l_poly[3] - self.r_poly[3])
self.lane_width_estimate += 0.005 * (current_lane_width - self.lane_width_estimate)
speed_lane_width = interp(v_ego, [0., 31.], [2.8, 3.5])
self.lane_width = self.lane_width_certainty * self.lane_width_estimate + \
(1 - self.lane_width_certainty) * speed_lane_width
self.d_poly = calc_d_poly(self.l_poly, self.r_poly, self.p_poly, self.l_prob, self.r_prob, self.lane_width)
def update(self, v_ego, md):
self.parse_model(md)
self.update_lane(v_ego)