You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
81 lines
2.8 KiB
81 lines
2.8 KiB
from common.numpy_fast import interp
|
|
import numpy as np
|
|
|
|
CAMERA_OFFSET = 0.06 # m from center car to camera
|
|
|
|
def compute_path_pinv(l=50):
|
|
deg = 3
|
|
x = np.arange(l*1.0)
|
|
X = np.vstack(tuple(x**n for n in range(deg, -1, -1))).T
|
|
pinv = np.linalg.pinv(X)
|
|
return pinv
|
|
|
|
|
|
def model_polyfit(points, path_pinv):
|
|
return np.dot(path_pinv, [float(x) for x in points])
|
|
|
|
|
|
def calc_d_poly(l_poly, r_poly, p_poly, l_prob, r_prob, lane_width):
|
|
# This will improve behaviour when lanes suddenly widen
|
|
lane_width = min(4.0, lane_width)
|
|
l_prob = l_prob * interp(abs(l_poly[3]), [2, 2.5], [1.0, 0.0])
|
|
r_prob = r_prob * interp(abs(r_poly[3]), [2, 2.5], [1.0, 0.0])
|
|
|
|
path_from_left_lane = l_poly.copy()
|
|
path_from_left_lane[3] -= lane_width / 2.0
|
|
path_from_right_lane = r_poly.copy()
|
|
path_from_right_lane[3] += lane_width / 2.0
|
|
|
|
lr_prob = l_prob * r_prob
|
|
|
|
d_poly_lane = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001)
|
|
return lr_prob * d_poly_lane + (1.0 - lr_prob) * p_poly
|
|
|
|
|
|
class LanePlanner(object):
|
|
def __init__(self):
|
|
self.l_poly = [0., 0., 0., 0.]
|
|
self.r_poly = [0., 0., 0., 0.]
|
|
self.p_poly = [0., 0., 0., 0.]
|
|
self.d_poly = [0., 0., 0., 0.]
|
|
|
|
self.lane_width_estimate = 3.7
|
|
self.lane_width_certainty = 1.0
|
|
self.lane_width = 3.7
|
|
|
|
self.l_prob = 0.
|
|
self.r_prob = 0.
|
|
|
|
self._path_pinv = compute_path_pinv()
|
|
self.x_points = np.arange(50)
|
|
|
|
def parse_model(self, md):
|
|
if len(md.leftLane.poly):
|
|
self.l_poly = np.array(md.leftLane.poly)
|
|
self.r_poly = np.array(md.rightLane.poly)
|
|
self.p_poly = np.array(md.path.poly)
|
|
else:
|
|
self.l_poly = model_polyfit(md.leftLane.points, self._path_pinv) # left line
|
|
self.r_poly = model_polyfit(md.rightLane.points, self._path_pinv) # right line
|
|
self.p_poly = model_polyfit(md.path.points, self._path_pinv) # predicted path
|
|
self.l_prob = md.leftLane.prob # left line prob
|
|
self.r_prob = md.rightLane.prob # right line prob
|
|
|
|
def update_lane(self, v_ego):
|
|
# only offset left and right lane lines; offsetting p_poly does not make sense
|
|
self.l_poly[3] += CAMERA_OFFSET
|
|
self.r_poly[3] += CAMERA_OFFSET
|
|
|
|
# Find current lanewidth
|
|
self.lane_width_certainty += 0.05 * (self.l_prob * self.r_prob - self.lane_width_certainty)
|
|
current_lane_width = abs(self.l_poly[3] - self.r_poly[3])
|
|
self.lane_width_estimate += 0.005 * (current_lane_width - self.lane_width_estimate)
|
|
speed_lane_width = interp(v_ego, [0., 31.], [2.8, 3.5])
|
|
self.lane_width = self.lane_width_certainty * self.lane_width_estimate + \
|
|
(1 - self.lane_width_certainty) * speed_lane_width
|
|
|
|
self.d_poly = calc_d_poly(self.l_poly, self.r_poly, self.p_poly, self.l_prob, self.r_prob, self.lane_width)
|
|
|
|
def update(self, v_ego, md):
|
|
self.parse_model(md)
|
|
self.update_lane(v_ego)
|
|
|