You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
257 lines
9.8 KiB
257 lines
9.8 KiB
#!/usr/bin/env python
|
|
import math
|
|
import numpy as np
|
|
from common.params import Params
|
|
from common.numpy_fast import interp
|
|
|
|
import selfdrive.messaging as messaging
|
|
from cereal import car
|
|
from common.realtime import sec_since_boot, DT_PLAN
|
|
from selfdrive.swaglog import cloudlog
|
|
from selfdrive.config import Conversions as CV
|
|
from selfdrive.controls.lib.speed_smoother import speed_smoother
|
|
from selfdrive.controls.lib.longcontrol import LongCtrlState, MIN_CAN_SPEED
|
|
from selfdrive.controls.lib.fcw import FCWChecker
|
|
from selfdrive.controls.lib.long_mpc import LongitudinalMpc
|
|
|
|
MAX_SPEED = 255.0
|
|
|
|
LON_MPC_STEP = 0.2 # first step is 0.2s
|
|
MAX_SPEED_ERROR = 2.0
|
|
AWARENESS_DECEL = -0.2 # car smoothly decel at .2m/s^2 when user is distracted
|
|
|
|
# lookup tables VS speed to determine min and max accels in cruise
|
|
# make sure these accelerations are smaller than mpc limits
|
|
_A_CRUISE_MIN_V = [-1.0, -.8, -.67, -.5, -.30]
|
|
_A_CRUISE_MIN_BP = [ 0., 5., 10., 20., 40.]
|
|
|
|
# need fast accel at very low speed for stop and go
|
|
# make sure these accelerations are smaller than mpc limits
|
|
_A_CRUISE_MAX_V = [1.1, 1.1, .8, .5, .3]
|
|
_A_CRUISE_MAX_V_FOLLOWING = [1.6, 1.6, 1.2, .7, .3]
|
|
_A_CRUISE_MAX_BP = [0., 5., 10., 20., 40.]
|
|
|
|
# Lookup table for turns
|
|
_A_TOTAL_MAX_V = [1.5, 1.9, 3.2]
|
|
_A_TOTAL_MAX_BP = [0., 20., 40.]
|
|
|
|
|
|
# Model speed kalman stuff
|
|
_MODEL_V_A = [[1.0, DT_PLAN], [0.0, 1.0]]
|
|
_MODEL_V_C = [1.0, 0]
|
|
# calculated with observation std of 2m/s and accel proc noise of 2m/s**2
|
|
_MODEL_V_K = [[0.07068858], [0.04826294]]
|
|
|
|
# 75th percentile
|
|
SPEED_PERCENTILE_IDX = 7
|
|
|
|
|
|
def calc_cruise_accel_limits(v_ego, following):
|
|
a_cruise_min = interp(v_ego, _A_CRUISE_MIN_BP, _A_CRUISE_MIN_V)
|
|
|
|
if following:
|
|
a_cruise_max = interp(v_ego, _A_CRUISE_MAX_BP, _A_CRUISE_MAX_V_FOLLOWING)
|
|
else:
|
|
a_cruise_max = interp(v_ego, _A_CRUISE_MAX_BP, _A_CRUISE_MAX_V)
|
|
return np.vstack([a_cruise_min, a_cruise_max])
|
|
|
|
|
|
def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
|
|
"""
|
|
This function returns a limited long acceleration allowed, depending on the existing lateral acceleration
|
|
this should avoid accelerating when losing the target in turns
|
|
"""
|
|
|
|
a_total_max = interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
|
|
a_y = v_ego**2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase)
|
|
a_x_allowed = math.sqrt(max(a_total_max**2 - a_y**2, 0.))
|
|
|
|
return [a_target[0], min(a_target[1], a_x_allowed)]
|
|
|
|
|
|
class Planner(object):
|
|
def __init__(self, CP):
|
|
self.CP = CP
|
|
|
|
self.mpc1 = LongitudinalMpc(1)
|
|
self.mpc2 = LongitudinalMpc(2)
|
|
|
|
self.v_acc_start = 0.0
|
|
self.a_acc_start = 0.0
|
|
|
|
self.v_acc = 0.0
|
|
self.v_acc_future = 0.0
|
|
self.a_acc = 0.0
|
|
self.v_cruise = 0.0
|
|
self.a_cruise = 0.0
|
|
self.v_model = 0.0
|
|
self.a_model = 0.0
|
|
|
|
self.longitudinalPlanSource = 'cruise'
|
|
self.fcw_checker = FCWChecker()
|
|
self.path_x = np.arange(192)
|
|
|
|
self.params = Params()
|
|
|
|
def choose_solution(self, v_cruise_setpoint, enabled):
|
|
if enabled:
|
|
solutions = {'cruise': self.v_cruise, 'model': self.v_model}
|
|
if self.mpc1.prev_lead_status:
|
|
solutions['mpc1'] = self.mpc1.v_mpc
|
|
if self.mpc2.prev_lead_status:
|
|
solutions['mpc2'] = self.mpc2.v_mpc
|
|
|
|
slowest = min(solutions, key=solutions.get)
|
|
|
|
self.longitudinalPlanSource = slowest
|
|
# Choose lowest of MPC and cruise
|
|
if slowest == 'mpc1':
|
|
self.v_acc = self.mpc1.v_mpc
|
|
self.a_acc = self.mpc1.a_mpc
|
|
elif slowest == 'mpc2':
|
|
self.v_acc = self.mpc2.v_mpc
|
|
self.a_acc = self.mpc2.a_mpc
|
|
elif slowest == 'cruise':
|
|
self.v_acc = self.v_cruise
|
|
self.a_acc = self.a_cruise
|
|
elif slowest == 'model':
|
|
self.v_acc = self.v_model
|
|
self.a_acc = self.a_model
|
|
|
|
self.v_acc_future = min([self.mpc1.v_mpc_future, self.mpc2.v_mpc_future, v_cruise_setpoint])
|
|
|
|
def update(self, sm, pm, CP, VM, PP):
|
|
"""Gets called when new radarState is available"""
|
|
cur_time = sec_since_boot()
|
|
v_ego = sm['carState'].vEgo
|
|
|
|
long_control_state = sm['controlsState'].longControlState
|
|
v_cruise_kph = sm['controlsState'].vCruise
|
|
force_slow_decel = sm['controlsState'].forceDecel
|
|
v_cruise_setpoint = v_cruise_kph * CV.KPH_TO_MS
|
|
|
|
lead_1 = sm['radarState'].leadOne
|
|
lead_2 = sm['radarState'].leadTwo
|
|
|
|
enabled = (long_control_state == LongCtrlState.pid) or (long_control_state == LongCtrlState.stopping)
|
|
following = lead_1.status and lead_1.dRel < 45.0 and lead_1.vLeadK > v_ego and lead_1.aLeadK > 0.0
|
|
|
|
if len(sm['model'].path.poly):
|
|
path = list(sm['model'].path.poly)
|
|
|
|
# Curvature of polynomial https://en.wikipedia.org/wiki/Curvature#Curvature_of_the_graph_of_a_function
|
|
# y = a x^3 + b x^2 + c x + d, y' = 3 a x^2 + 2 b x + c, y'' = 6 a x + 2 b
|
|
# k = y'' / (1 + y'^2)^1.5
|
|
y_p = 3 * path[0] * self.path_x**2 + 2 * path[1] * self.path_x + path[2]
|
|
y_pp = 6 * path[0] * self.path_x + 2 * path[1]
|
|
curv = y_pp / (1. + y_p**2)**1.5
|
|
|
|
a_y_max = 2.975 - v_ego * 0.0375 # ~1.85 @ 75mph, ~2.6 @ 25mph
|
|
v_curvature = np.sqrt(a_y_max / np.clip(np.abs(curv), 1e-4, None))
|
|
model_speed = np.min(v_curvature)
|
|
# print(model_speed * CV.MS_TO_MPH, model_speed)
|
|
model_speed = max(20.0 * CV.MPH_TO_MS, model_speed) # Don't slow down below 20mph
|
|
else:
|
|
model_speed = MAX_SPEED
|
|
|
|
# Calculate speed for normal cruise control
|
|
if enabled:
|
|
accel_limits = [float(x) for x in calc_cruise_accel_limits(v_ego, following)]
|
|
jerk_limits = [min(-0.1, accel_limits[0]), max(0.1, accel_limits[1])] # TODO: make a separate lookup for jerk tuning
|
|
accel_limits_turns = limit_accel_in_turns(v_ego, sm['carState'].steeringAngle, accel_limits, self.CP)
|
|
|
|
if force_slow_decel:
|
|
# if required so, force a smooth deceleration
|
|
accel_limits_turns[1] = min(accel_limits_turns[1], AWARENESS_DECEL)
|
|
accel_limits_turns[0] = min(accel_limits_turns[0], accel_limits_turns[1])
|
|
|
|
self.v_cruise, self.a_cruise = speed_smoother(self.v_acc_start, self.a_acc_start,
|
|
v_cruise_setpoint,
|
|
accel_limits_turns[1], accel_limits_turns[0],
|
|
jerk_limits[1], jerk_limits[0],
|
|
LON_MPC_STEP)
|
|
|
|
self.v_model, self.a_model = speed_smoother(self.v_acc_start, self.a_acc_start,
|
|
model_speed,
|
|
2*accel_limits[1], accel_limits[0],
|
|
2*jerk_limits[1], jerk_limits[0],
|
|
LON_MPC_STEP)
|
|
|
|
# cruise speed can't be negative even is user is distracted
|
|
self.v_cruise = max(self.v_cruise, 0.)
|
|
else:
|
|
starting = long_control_state == LongCtrlState.starting
|
|
a_ego = min(sm['carState'].aEgo, 0.0)
|
|
reset_speed = MIN_CAN_SPEED if starting else v_ego
|
|
reset_accel = self.CP.startAccel if starting else a_ego
|
|
self.v_acc = reset_speed
|
|
self.a_acc = reset_accel
|
|
self.v_acc_start = reset_speed
|
|
self.a_acc_start = reset_accel
|
|
self.v_cruise = reset_speed
|
|
self.a_cruise = reset_accel
|
|
|
|
self.mpc1.set_cur_state(self.v_acc_start, self.a_acc_start)
|
|
self.mpc2.set_cur_state(self.v_acc_start, self.a_acc_start)
|
|
|
|
self.mpc1.update(pm, sm['carState'], lead_1, v_cruise_setpoint)
|
|
self.mpc2.update(pm, sm['carState'], lead_2, v_cruise_setpoint)
|
|
|
|
self.choose_solution(v_cruise_setpoint, enabled)
|
|
|
|
# determine fcw
|
|
if self.mpc1.new_lead:
|
|
self.fcw_checker.reset_lead(cur_time)
|
|
|
|
blinkers = sm['carState'].leftBlinker or sm['carState'].rightBlinker
|
|
fcw = self.fcw_checker.update(self.mpc1.mpc_solution, cur_time,
|
|
sm['controlsState'].active,
|
|
v_ego, sm['carState'].aEgo,
|
|
lead_1.dRel, lead_1.vLead, lead_1.aLeadK,
|
|
lead_1.yRel, lead_1.vLat,
|
|
lead_1.fcw, blinkers) and not sm['carState'].brakePressed
|
|
if fcw:
|
|
cloudlog.info("FCW triggered %s", self.fcw_checker.counters)
|
|
|
|
radar_dead = not sm.alive['radarState']
|
|
|
|
radar_errors = list(sm['radarState'].radarErrors)
|
|
radar_fault = car.RadarData.Error.fault in radar_errors
|
|
radar_can_error = car.RadarData.Error.canError in radar_errors
|
|
|
|
# **** send the plan ****
|
|
plan_send = messaging.new_message()
|
|
plan_send.init('plan')
|
|
|
|
plan_send.valid = sm.all_alive_and_valid(service_list=['carState', 'controlsState', 'radarState'])
|
|
|
|
plan_send.plan.mdMonoTime = sm.logMonoTime['model']
|
|
plan_send.plan.radarStateMonoTime = sm.logMonoTime['radarState']
|
|
|
|
# longitudal plan
|
|
plan_send.plan.vCruise = float(self.v_cruise)
|
|
plan_send.plan.aCruise = float(self.a_cruise)
|
|
plan_send.plan.vStart = float(self.v_acc_start)
|
|
plan_send.plan.aStart = float(self.a_acc_start)
|
|
plan_send.plan.vTarget = float(self.v_acc)
|
|
plan_send.plan.aTarget = float(self.a_acc)
|
|
plan_send.plan.vTargetFuture = float(self.v_acc_future)
|
|
plan_send.plan.hasLead = self.mpc1.prev_lead_status
|
|
plan_send.plan.longitudinalPlanSource = self.longitudinalPlanSource
|
|
|
|
radar_valid = not (radar_dead or radar_fault)
|
|
plan_send.plan.radarValid = bool(radar_valid)
|
|
plan_send.plan.radarCanError = bool(radar_can_error)
|
|
|
|
plan_send.plan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.rcv_time['radarState']
|
|
|
|
# Send out fcw
|
|
plan_send.plan.fcw = fcw
|
|
|
|
pm.send('plan', plan_send)
|
|
|
|
# Interpolate 0.05 seconds and save as starting point for next iteration
|
|
a_acc_sol = self.a_acc_start + (DT_PLAN / LON_MPC_STEP) * (self.a_acc - self.a_acc_start)
|
|
v_acc_sol = self.v_acc_start + DT_PLAN * (a_acc_sol + self.a_acc_start) / 2.0
|
|
self.v_acc_start = v_acc_sol
|
|
self.a_acc_start = a_acc_sol
|
|
|