openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

250 lines
8.6 KiB

#include "bmx055_magn.h"
#include <unistd.h>
#include <algorithm>
#include <cassert>
#include <cstdio>
#include "selfdrive/common/swaglog.h"
#include "selfdrive/common/util.h"
static int16_t compensate_x(trim_data_t trim_data, int16_t mag_data_x, uint16_t data_rhall) {
uint16_t process_comp_x0 = data_rhall;
int32_t process_comp_x1 = ((int32_t)trim_data.dig_xyz1) * 16384;
uint16_t process_comp_x2 = ((uint16_t)(process_comp_x1 / process_comp_x0)) - ((uint16_t)0x4000);
int16_t retval = ((int16_t)process_comp_x2);
int32_t process_comp_x3 = (((int32_t)retval) * ((int32_t)retval));
int32_t process_comp_x4 = (((int32_t)trim_data.dig_xy2) * (process_comp_x3 / 128));
int32_t process_comp_x5 = (int32_t)(((int16_t)trim_data.dig_xy1) * 128);
int32_t process_comp_x6 = ((int32_t)retval) * process_comp_x5;
int32_t process_comp_x7 = (((process_comp_x4 + process_comp_x6) / 512) + ((int32_t)0x100000));
int32_t process_comp_x8 = ((int32_t)(((int16_t)trim_data.dig_x2) + ((int16_t)0xA0)));
int32_t process_comp_x9 = ((process_comp_x7 * process_comp_x8) / 4096);
int32_t process_comp_x10 = ((int32_t)mag_data_x) * process_comp_x9;
retval = ((int16_t)(process_comp_x10 / 8192));
retval = (retval + (((int16_t)trim_data.dig_x1) * 8)) / 16;
return retval;
}
static int16_t compensate_y(trim_data_t trim_data, int16_t mag_data_y, uint16_t data_rhall) {
uint16_t process_comp_y0 = trim_data.dig_xyz1;
int32_t process_comp_y1 = (((int32_t)trim_data.dig_xyz1) * 16384) / process_comp_y0;
uint16_t process_comp_y2 = ((uint16_t)process_comp_y1) - ((uint16_t)0x4000);
int16_t retval = ((int16_t)process_comp_y2);
int32_t process_comp_y3 = ((int32_t) retval) * ((int32_t)retval);
int32_t process_comp_y4 = ((int32_t)trim_data.dig_xy2) * (process_comp_y3 / 128);
int32_t process_comp_y5 = ((int32_t)(((int16_t)trim_data.dig_xy1) * 128));
int32_t process_comp_y6 = ((process_comp_y4 + (((int32_t)retval) * process_comp_y5)) / 512);
int32_t process_comp_y7 = ((int32_t)(((int16_t)trim_data.dig_y2) + ((int16_t)0xA0)));
int32_t process_comp_y8 = (((process_comp_y6 + ((int32_t)0x100000)) * process_comp_y7) / 4096);
int32_t process_comp_y9 = (((int32_t)mag_data_y) * process_comp_y8);
retval = (int16_t)(process_comp_y9 / 8192);
retval = (retval + (((int16_t)trim_data.dig_y1) * 8)) / 16;
return retval;
}
static int16_t compensate_z(trim_data_t trim_data, int16_t mag_data_z, uint16_t data_rhall) {
int16_t process_comp_z0 = ((int16_t)data_rhall) - ((int16_t) trim_data.dig_xyz1);
int32_t process_comp_z1 = (((int32_t)trim_data.dig_z3) * ((int32_t)(process_comp_z0))) / 4;
int32_t process_comp_z2 = (((int32_t)(mag_data_z - trim_data.dig_z4)) * 32768);
int32_t process_comp_z3 = ((int32_t)trim_data.dig_z1) * (((int16_t)data_rhall) * 2);
int16_t process_comp_z4 = (int16_t)((process_comp_z3 + (32768)) / 65536);
int32_t retval = ((process_comp_z2 - process_comp_z1) / (trim_data.dig_z2 + process_comp_z4));
/* saturate result to +/- 2 micro-tesla */
retval = std::clamp(retval, -32767, 32767);
/* Conversion of LSB to micro-tesla*/
retval = retval / 16;
return (int16_t)retval;
}
BMX055_Magn::BMX055_Magn(I2CBus *bus) : I2CSensor(bus) {}
int BMX055_Magn::init() {
int ret;
uint8_t buffer[1];
uint8_t trim_x1y1[2] = {0};
uint8_t trim_x2y2[2] = {0};
uint8_t trim_xy1xy2[2] = {0};
uint8_t trim_z1[2] = {0};
uint8_t trim_z2[2] = {0};
uint8_t trim_z3[2] = {0};
uint8_t trim_z4[2] = {0};
uint8_t trim_xyz1[2] = {0};
// suspend -> sleep
ret = set_register(BMX055_MAGN_I2C_REG_PWR_0, 0x01);
if(ret < 0) {
LOGE("Enabling power failed: %d", ret);
goto fail;
}
util::sleep_for(5); // wait until the chip is powered on
// read chip ID
ret = read_register(BMX055_MAGN_I2C_REG_ID, buffer, 1);
if(ret < 0) {
LOGE("Reading chip ID failed: %d", ret);
goto fail;
}
if(buffer[0] != BMX055_MAGN_CHIP_ID) {
LOGE("Chip ID wrong. Got: %d, Expected %d", buffer[0], BMX055_MAGN_CHIP_ID);
return -1;
}
// Load magnetometer trim
ret = read_register(BMX055_MAGN_I2C_REG_DIG_X1, trim_x1y1, 2);
if(ret < 0) goto fail;
ret = read_register(BMX055_MAGN_I2C_REG_DIG_X2, trim_x2y2, 2);
if(ret < 0) goto fail;
ret = read_register(BMX055_MAGN_I2C_REG_DIG_XY2, trim_xy1xy2, 2);
if(ret < 0) goto fail;
ret = read_register(BMX055_MAGN_I2C_REG_DIG_Z1_LSB, trim_z1, 2);
if(ret < 0) goto fail;
ret = read_register(BMX055_MAGN_I2C_REG_DIG_Z2_LSB, trim_z2, 2);
if(ret < 0) goto fail;
ret = read_register(BMX055_MAGN_I2C_REG_DIG_Z3_LSB, trim_z3, 2);
if(ret < 0) goto fail;
ret = read_register(BMX055_MAGN_I2C_REG_DIG_Z4_LSB, trim_z4, 2);
if(ret < 0) goto fail;
ret = read_register(BMX055_MAGN_I2C_REG_DIG_XYZ1_LSB, trim_xyz1, 2);
if(ret < 0) goto fail;
// Read trim data
trim_data.dig_x1 = trim_x1y1[0];
trim_data.dig_y1 = trim_x1y1[1];
trim_data.dig_x2 = trim_x2y2[0];
trim_data.dig_y2 = trim_x2y2[1];
trim_data.dig_xy1 = trim_xy1xy2[1]; // NB: MSB/LSB swapped
trim_data.dig_xy2 = trim_xy1xy2[0];
trim_data.dig_z1 = read_16_bit(trim_z1[0], trim_z1[1]);
trim_data.dig_z2 = read_16_bit(trim_z2[0], trim_z2[1]);
trim_data.dig_z3 = read_16_bit(trim_z3[0], trim_z3[1]);
trim_data.dig_z4 = read_16_bit(trim_z4[0], trim_z4[1]);
trim_data.dig_xyz1 = read_16_bit(trim_xyz1[0], trim_xyz1[1] & 0x7f);
assert(trim_data.dig_xyz1 != 0);
perform_self_test();
// f_max = 1 / (145us * nXY + 500us * NZ + 980us)
// Chose NXY = 7, NZ = 12, which gives 125 Hz,
// and has the same ratio as the high accuracy preset
ret = set_register(BMX055_MAGN_I2C_REG_REPXY, (7 - 1) / 2);
if (ret < 0) {
goto fail;
}
ret = set_register(BMX055_MAGN_I2C_REG_REPZ, 12 - 1);
if (ret < 0) {
goto fail;
}
return 0;
fail:
return ret;
}
bool BMX055_Magn::perform_self_test() {
uint8_t buffer[8];
int16_t x, y;
int16_t neg_z, pos_z;
// Increase z reps for less false positives (~30 Hz ODR)
set_register(BMX055_MAGN_I2C_REG_REPXY, 1);
set_register(BMX055_MAGN_I2C_REG_REPZ, 64 - 1);
// Clean existing measurement
read_register(BMX055_MAGN_I2C_REG_DATAX_LSB, buffer, sizeof(buffer));
uint8_t forced = BMX055_MAGN_FORCED;
// Negative current
set_register(BMX055_MAGN_I2C_REG_MAG, forced | (uint8_t(0b10) << 6));
util::sleep_for(100);
read_register(BMX055_MAGN_I2C_REG_DATAX_LSB, buffer, sizeof(buffer));
parse_xyz(buffer, &x, &y, &neg_z);
// Positive current
set_register(BMX055_MAGN_I2C_REG_MAG, forced | (uint8_t(0b11) << 6));
util::sleep_for(100);
read_register(BMX055_MAGN_I2C_REG_DATAX_LSB, buffer, sizeof(buffer));
parse_xyz(buffer, &x, &y, &pos_z);
// Put back in normal mode
set_register(BMX055_MAGN_I2C_REG_MAG, 0);
int16_t diff = pos_z - neg_z;
bool passed = (diff > 180) && (diff < 240);
if (!passed) {
LOGE("self test failed: neg %d pos %d diff %d", neg_z, pos_z, diff);
}
return passed;
}
bool BMX055_Magn::parse_xyz(uint8_t buffer[8], int16_t *x, int16_t *y, int16_t *z) {
bool ready = buffer[6] & 0x1;
if (ready) {
int16_t mdata_x = (int16_t) (((int16_t)buffer[1] << 8) | buffer[0]) >> 3;
int16_t mdata_y = (int16_t) (((int16_t)buffer[3] << 8) | buffer[2]) >> 3;
int16_t mdata_z = (int16_t) (((int16_t)buffer[5] << 8) | buffer[4]) >> 1;
uint16_t data_r = (uint16_t) (((uint16_t)buffer[7] << 8) | buffer[6]) >> 2;
assert(data_r != 0);
*x = compensate_x(trim_data, mdata_x, data_r);
*y = compensate_y(trim_data, mdata_y, data_r);
*z = compensate_z(trim_data, mdata_z, data_r);
}
return ready;
}
void BMX055_Magn::get_event(cereal::SensorEventData::Builder &event) {
uint64_t start_time = nanos_since_boot();
uint8_t buffer[8];
int16_t _x, _y, x, y, z;
int len = read_register(BMX055_MAGN_I2C_REG_DATAX_LSB, buffer, sizeof(buffer));
assert(len == sizeof(buffer));
if (parse_xyz(buffer, &_x, &_y, &z)) {
event.setSource(cereal::SensorEventData::SensorSource::BMX055);
event.setVersion(2);
event.setSensor(SENSOR_MAGNETOMETER_UNCALIBRATED);
event.setType(SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED);
event.setTimestamp(start_time);
// Move magnetometer into same reference frame as accel/gryo
x = -_y;
y = _x;
// Axis convention
x = -x;
y = -y;
float xyz[] = {(float)x, (float)y, (float)z};
auto svec = event.initMagneticUncalibrated();
svec.setV(xyz);
svec.setStatus(true);
}
// The BMX055 Magnetometer has no FIFO mode. Self running mode only goes
// up to 30 Hz. Therefore we put in forced mode, and request measurements
// at a 100 Hz. When reading the registers we have to check the ready bit
// To verify the measurement was completed this cycle.
set_register(BMX055_MAGN_I2C_REG_MAG, BMX055_MAGN_FORCED);
}